Biomedical Document Clustering Based on Accelerated Symbiotic Organisms Search Algorithm

2021 ◽  
Vol 12 (4) ◽  
pp. 169-185
Author(s):  
Saida Ishak Boushaki ◽  
Omar Bendjeghaba ◽  
Nadjet Kamel

Clustering is an important unsupervised analysis technique for big data mining. It finds its application in several domains including biomedical documents of the MEDLINE database. Document clustering algorithms based on metaheuristics is an active research area. However, these algorithms suffer from the problems of getting trapped in local optima, need many parameters to adjust, and the documents should be indexed by a high dimensionality matrix using the traditional vector space model. In order to overcome these limitations, in this paper a new documents clustering algorithm (ASOS-LSI) with no parameters is proposed. It is based on the recent symbiotic organisms search metaheuristic (SOS) and enhanced by an acceleration technique. Furthermore, the documents are represented by semantic indexing based on the famous latent semantic indexing (LSI). Conducted experiments on well-known biomedical documents datasets show the significant superiority of ASOS-LSI over five famous algorithms in terms of compactness, f-measure, purity, misclassified documents, entropy, and runtime.

2018 ◽  
Vol 17 (03) ◽  
pp. 1850033 ◽  
Author(s):  
Saida Ishak Boushaki ◽  
Nadjet Kamel ◽  
Omar Bendjeghaba

The clustering is an important data analysis technique. However, clustering high-dimensional data like documents needs more effort in order to extract the richness relevant information hidden in the multidimensionality space. Recently, document clustering algorithms based on metaheuristics have demonstrated their efficiency to explore the search area and to achieve the global best solution rather than the local one. However, most of these algorithms are not practical and suffer from some limitations, including the requirement of the knowledge of the number of clusters in advance, they are neither incremental nor extensible and the documents are indexed by high-dimensional and sparse matrix. In order to overcome these limitations, we propose in this paper, a new dynamic and incremental approach (CS_LSI) for document clustering based on the recent cuckoo search (CS) optimization and latent semantic indexing (LSI). Conducted Experiments on four well-known high-dimensional text datasets show the efficiency of LSI model to reduce the dimensionality space with more precision and less computational time. Also, the proposed CS_LSI determines the number of clusters automatically by employing a new proposed index, focused on significant distance measure. This later is also used in the incremental mode and to detect the outlier documents by maintaining a more coherent clusters. Furthermore, comparison with conventional document clustering algorithms shows the superiority of CS_LSI to achieve a high quality of clustering.


2021 ◽  
pp. 136943322110262
Author(s):  
Mohammad H Makiabadi ◽  
Mahmoud R Maheri

An enhanced symbiotic organisms search (ESOS) algorithm is developed and presented. Modifications to the basic symbiotic organisms search algorithm are carried out in all three phases of the algorithm with the aim of balancing the exploitation and exploration capabilities of the algorithm. To verify validity and capability of the ESOS algorithm in solving general optimization problems, the CEC2014 set of 22 benchmark functions is first optimized and the results are compared with other metaheuristic algorithms. The ESOS algorithm is then used to optimize the sizing and shape of five benchmark trusses with multiple frequency constraints. The best (minimum) mass, mean mass, standard deviation of the mass, total number of function evaluations, and the values of frequency constraints are then compared with those of a number of other metaheuristic solutions available in the literature. It is shown that the proposed ESOS algorithm is generally more efficient in optimizing the shape and sizing of trusses with dynamic frequency constraints compared to other reported metaheuristic algorithms, including the basic symbiotic organisms search and its other recently proposed improved variants such as the improved symbiotic organisms search algorithm (ISOS) and modified symbiotic organisms search algorithm (MSOS).


Sign in / Sign up

Export Citation Format

Share Document