Symbiotic organisms search algorithm using random walk and adaptive Cauchy mutation on the feature selection of sleep staging

2021 ◽  
pp. 114887
Author(s):  
Fahui Miao ◽  
Li Yao ◽  
Xiaojie Zhao
Author(s):  
Hekmat Mohmmadzadeh ◽  
Farhad Soleimanian Gharehchopogh

Feature selection is one of the main data preprocessing steps in machine learning. Its goal is to reduce the number of features by removing extra and noisy features. Feature selection methods must consider the accuracy of classification algorithms while performing feature reduction on a dataset. Meta-heuristic algorithms are the most successful and promising methods for solving this issue. The symbiotic organisms search algorithm is one of the successful meta-heuristic algorithms which is inspired by the interaction of organisms in the nature called Parasitism Commensalism Mutualism. In this paper, three engulfing binary methods based on the symbiotic organisms search algorithm are presented for solving the feature selection problem. In the first and second methods, several S-shaped and V-shaped transfer functions are used for binarizing the symbiotic organisms search algorithm, respectively. These methods are called BSOSS and BSOSV. In the third method, two new operators called BMP and BCP are presented for binarizing the symbiotic organisms search algorithm. This method is called EBSOS. The third approach presents an advanced binary version of the coexistence search algorithm with two new operators, BMP and BCP, to solve the feature selection problem, named EBSOS. The proposed methods are run on 18 standard UCI datasets and compared to base and important meta-heuristic algorithms. The test results show that the EBSOS method has the best performance among the three proposed approaches for binarization of the coexistence search algorithm. Finally, the proposed EBSOS approach was compared to other meta-heuristic methods including the genetic algorithm, binary bat algorithm, binary particle swarm algorithm, binary flower pollination algorithm, binary grey wolf algorithm, binary dragonfly algorithm, and binary chaotic crow search algorithm. The results of different experiments showed that the proposed EBSOS approach has better performance compared to other methods in terms of feature count and accuracy criteria. Furthermore, the proposed EBSOS approach was practically evaluated on spam email detection in particular. The results of this experiment also verified the performance of the proposed EBSOS approach. In addition, the proposed EBSOS approach is particularly combined with the classifiers including SVM, KNN, NB and MLP to evaluate this method performance in the detection of spam emails. The obtained results showed that the proposed EBSOS approach has significantly improved the accuracy and speed of all the classifiers in spam email detection.


2021 ◽  
pp. 136943322110262
Author(s):  
Mohammad H Makiabadi ◽  
Mahmoud R Maheri

An enhanced symbiotic organisms search (ESOS) algorithm is developed and presented. Modifications to the basic symbiotic organisms search algorithm are carried out in all three phases of the algorithm with the aim of balancing the exploitation and exploration capabilities of the algorithm. To verify validity and capability of the ESOS algorithm in solving general optimization problems, the CEC2014 set of 22 benchmark functions is first optimized and the results are compared with other metaheuristic algorithms. The ESOS algorithm is then used to optimize the sizing and shape of five benchmark trusses with multiple frequency constraints. The best (minimum) mass, mean mass, standard deviation of the mass, total number of function evaluations, and the values of frequency constraints are then compared with those of a number of other metaheuristic solutions available in the literature. It is shown that the proposed ESOS algorithm is generally more efficient in optimizing the shape and sizing of trusses with dynamic frequency constraints compared to other reported metaheuristic algorithms, including the basic symbiotic organisms search and its other recently proposed improved variants such as the improved symbiotic organisms search algorithm (ISOS) and modified symbiotic organisms search algorithm (MSOS).


2021 ◽  
pp. 100572
Author(s):  
Malek Alzaqebah ◽  
Khaoula Briki ◽  
Nashat Alrefai ◽  
Sami Brini ◽  
Sana Jawarneh ◽  
...  

2021 ◽  
Vol 12 (4) ◽  
pp. 169-185
Author(s):  
Saida Ishak Boushaki ◽  
Omar Bendjeghaba ◽  
Nadjet Kamel

Clustering is an important unsupervised analysis technique for big data mining. It finds its application in several domains including biomedical documents of the MEDLINE database. Document clustering algorithms based on metaheuristics is an active research area. However, these algorithms suffer from the problems of getting trapped in local optima, need many parameters to adjust, and the documents should be indexed by a high dimensionality matrix using the traditional vector space model. In order to overcome these limitations, in this paper a new documents clustering algorithm (ASOS-LSI) with no parameters is proposed. It is based on the recent symbiotic organisms search metaheuristic (SOS) and enhanced by an acceleration technique. Furthermore, the documents are represented by semantic indexing based on the famous latent semantic indexing (LSI). Conducted experiments on well-known biomedical documents datasets show the significant superiority of ASOS-LSI over five famous algorithms in terms of compactness, f-measure, purity, misclassified documents, entropy, and runtime.


Sign in / Sign up

Export Citation Format

Share Document