Location-Based Services (LBS) in Micro-Scale Navigation

2009 ◽  
Vol 1 (4) ◽  
pp. 51-71 ◽  
Author(s):  
Suleiman Almasri ◽  
Muhammad Alnabhan ◽  
Ziad Hunaiti ◽  
Eliamani Sedoyeka

Pedestrians LBS are accessible by hand-held devices and become a large field of energetic research since the recent developments in wireless communication, mobile technologies and positioning techniques. LBS applications provide services like finding the neighboring facility within a certain area such as the closest restaurants, hospital, or public telephone. With the increased demand for richer mobile services, LBS propose a promising add-on to the current services offered by network operators and third-party service providers such as multimedia contents. The performance of LBS systems is directly affected by each component forming its architecture. Firstly, the end-user mobile device is still experiencing a lack of enough storage, limitations in CPU capabilities and short battery lifetime. Secondly, the mobile wireless network is still having problems with the size of bandwidth, packet loss, congestions and delay. Additionally, in spite of the fact that GPS is the most accurate navigation system, there are still some issues in micro scale navigation, mainly availability and accuracy. Finally, LBS server which hosts geographical and users information is experiencing difficulties in managing the huge size of data which causes a long query processing time. This paper presents a technical investigation and analysis of the performance of each component of LBS system for pedestrian navigation, through conducting several experimental tests in different locations. The results of this investigation have pinpointed the weaknesses of the system in micro-scale environments. In addition, this paper proposes a group of solutions and recommendations for most of these shortcomings.

Author(s):  
Suleiman Almasri ◽  
Muhammad Alnabhan ◽  
Ziad Hunaiti ◽  
Eliamani Sedoyeka

Pedestrians LBS are accessible by hand-held devices and become a large field of energetic research since the recent developments in wireless communication, mobile technologies and positioning techniques. LBS applications provide services like finding the neighboring facility within a certain area such as the closest restaurants, hospital, or public telephone. With the increased demand for richer mobile services, LBS propose a promising add-on to the current services offered by network operators and third-party service providers such as multimedia contents. The performance of LBS systems is directly affected by each component forming its architecture. Firstly, the end-user mobile device is still experiencing a lack of enough storage, limitations in CPU capabilities and short battery lifetime. Secondly, the mobile wireless network is still having problems with the size of bandwidth, packet loss, congestions and delay. Additionally, in spite of the fact that GPS is the most accurate navigation system, there are still some issues in micro scale navigation, mainly availability and accuracy. Finally, LBS server which hosts geographical and users information is experiencing difficulties in managing the huge size of data which causes a long query processing time. This paper presents a technical investigation and analysis of the performance of each component of LBS system for pedestrian navigation, through conducting several experimental tests in different locations. The results of this investigation have pinpointed the weaknesses of the system in micro-scale environments. In addition, this paper proposes a group of solutions and recommendations for most of these shortcomings.


2021 ◽  
pp. 1-12
Author(s):  
Gokay Saldamli ◽  
Richard Chow ◽  
Hongxia Jin

Social networking services are increasingly accessed through mobile devices. This trend has prompted services such as Facebook and Google+to incorporate location as a de facto feature of user interaction. At the same time, services based on location such as Foursquare and Shopkick are also growing as smartphone market penetration increases. In fact, this growth is happening despite concerns (growing at a similar pace) about security and third-party use of private location information (e.g., for advertising). Nevertheless, service providers have been unwilling to build truly private systems in which they do not have access to location information. In this paper, we describe an architecture and a trial implementation of a privacy-preserving location sharing system called ILSSPP. The system protects location information from the service provider and yet enables fine grained location-sharing. One main feature of the system is to protect an individual’s social network structure. The pattern of location sharing preferences towards contacts can reveal this structure without any knowledge of the locations themselves. ILSSPP protects locations sharing preferences through protocol unification and masking. ILSSPP has been implemented as a standalone solution, but the technology can also be integrated into location-based services to enhance privacy.


2008 ◽  
Vol 61 (4) ◽  
pp. 573-589 ◽  
Author(s):  
Renato Filjar ◽  
Gordan Jezic ◽  
Maja Matijasevic

With the widespread use of mobile devices and increased demand for mobile services, Location-Based Services (LBS) represent a promising addition to service offerings of network operators as well as third-party service providers. Based on long-term research in LBS, our group has proposed a generic Enhanced LBS Reference Model (ELRM), which describes the concept, the architecture and the functionalities of the LBS. In addition, an evolutionary information process has been identified within the LBS, that represents knowledge maturity from position awareness to situation awareness. Both the ELRM and the information evolution process in LBS are presented in this article and illustrated by a case study within the framework of the 3GPP-standardised IP Multimedia Subsystem (IMS). This case-study emphasises the opportunities for navigation- and LBS-related solutions development provided by modern telecommunication technologies.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Weiqi Zhang ◽  
Guisheng Yin ◽  
Yuhai Sha ◽  
Jishen Yang

The rapid development of the Global Positioning System (GPS) devices and location-based services (LBSs) facilitates the collection of huge amounts of personal information for the untrusted/unknown LBS providers. This phenomenon raises serious privacy concerns. However, most of the existing solutions aim at locating interference in the static scenes or in a single timestamp without considering the correlation between location transfer and time of moving users. In this way, the solutions are vulnerable to various inference attacks. Traditional privacy protection methods rely on trusted third-party service providers, but in reality, we are not sure whether the third party is trustable. In this paper, we propose a systematic solution to preserve location information. The protection provides a rigorous privacy guarantee without the assumption of the credibility of the third parties. The user’s historical trajectory information is used as the basis of the hidden Markov model prediction, and the user’s possible prospective location is used as the model output result to protect the user’s trajectory privacy. To formalize the privacy-protecting guarantee, we propose a new definition, L&A-location region, based on k -anonymity and differential privacy. Based on the proposed privacy definition, we design a novel mechanism to provide a privacy protection guarantee for the users’ identity trajectory. We simulate the proposed mechanism based on a dataset collected in real practice. The result of the simulation shows that the proposed algorithm can provide privacy protection to a high standard.


2020 ◽  
Vol 12 (4) ◽  
pp. 48-62
Author(s):  
A. B. Manju ◽  
Sumathy Subramanian

With advancements in smart mobile devices and their capabilities, location-based services have gained utmost importance, as its individual and social benefits are enormous. Users of location-based services have a concern to the security issues posed by its usage as the location service providers track the users' interests, behavior, and identity information. Most of the location-based services are launched from mobile phones that have stringent resources; hence incorporating encryption schemes becomes tedious, and further, dual identity attacks uncover the encrypted message. A fog-assisted privacy protection scheme for location-based service (FPriLBS) employs a semi-trusted third party as a fog server to eliminate redundant queries submitted to the location service provider in addition to the trusted helper selection scheme which hides the real identity of the user from the fog server. The experimental results show that the proposed FPriLBS outperforms the existing schemes in terms of processing time and processing cost.


Author(s):  
Jin Han ◽  
Jing Zhan ◽  
Xiaoqing Xia ◽  
Xue Fan

Background: Currently, Cloud Service Provider (CSP) or third party usually proposes principles and methods for cloud security risk evaluation, while cloud users have no choice but accept them. However, since cloud users and cloud service providers have conflicts of interests, cloud users may not trust the results of security evaluation performed by the CSP. Also, different cloud users may have different security risk preferences, which makes it difficult for third party to consider all users' needs during evaluation. In addition, current security evaluation indexes for cloud are too impractical to test (e.g., indexes like interoperability, transparency, portability are not easy to be evaluated). Methods: To solve the above problems, this paper proposes a practical cloud security risk evaluation method of decision-making based on conflicting roles by using the Analytic Hierarchy Process (AHP) with Aggregation of Individual priorities (AIP). Results: Not only can our method bring forward a new index system based on risk source for cloud security and corresponding practical testing methods, but also can obtain the evaluation result with the risk preferences of conflicting roles, namely CSP and cloud users, which can lay a foundation for improving mutual trusts between the CSP and cloud users. The experiments show that the method can effectively assess the security risk of cloud platforms and in the case where the number of clouds increased by 100% and 200%, the evaluation time using our methodology increased by only by 12% and 30%. Conclusion: Our method can achieve consistent decision based on conflicting roles, high scalability and practicability for cloud security risk evaluation.


Network ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 75-94
Author(s):  
Ed Kamya Kiyemba Edris ◽  
Mahdi Aiash ◽  
Jonathan Loo

Fifth Generation mobile networks (5G) promise to make network services provided by various Service Providers (SP) such as Mobile Network Operators (MNOs) and third-party SPs accessible from anywhere by the end-users through their User Equipment (UE). These services will be pushed closer to the edge for quick, seamless, and secure access. After being granted access to a service, the end-user will be able to cache and share data with other users. However, security measures should be in place for SP not only to secure the provisioning and access of those services but also, should be able to restrict what the end-users can do with the accessed data in or out of coverage. This can be facilitated by federated service authorization and access control mechanisms that restrict the caching and sharing of data accessed by the UE in different security domains. In this paper, we propose a Data Caching and Sharing Security (DCSS) protocol that leverages federated authorization to provide secure caching and sharing of data from multiple SPs in multiple security domains. We formally verify the proposed DCSS protocol using ProVerif and applied pi-calculus. Furthermore, a comprehensive security analysis of the security properties of the proposed DCSS protocol is conducted.


2021 ◽  
Vol 11 (15) ◽  
pp. 6805
Author(s):  
Khaoula Mannay ◽  
Jesús Ureña ◽  
Álvaro Hernández ◽  
José M. Villadangos ◽  
Mohsen Machhout ◽  
...  

Indoor positioning systems have become a feasible solution for the current development of multiple location-based services and applications. They often consist of deploying a certain set of beacons in the environment to create a coverage volume, wherein some receivers, such as robots, drones or smart devices, can move while estimating their own position. Their final accuracy and performance mainly depend on several factors: the workspace size and its nature, the technologies involved (Wi-Fi, ultrasound, light, RF), etc. This work evaluates a 3D ultrasonic local positioning system (3D-ULPS) based on three independent ULPSs installed at specific positions to cover almost all the workspace and position mobile ultrasonic receivers in the environment. Because the proposal deals with numerous ultrasonic emitters, it is possible to determine different time differences of arrival (TDOA) between them and the receiver. In that context, the selection of a suitable fusion method to merge all this information into a final position estimate is a key aspect of the proposal. A linear Kalman filter (LKF) and an adaptive Kalman filter (AKF) are proposed in that regard for a loosely coupled approach, where the positions obtained from each ULPS are merged together. On the other hand, as a tightly coupled method, an extended Kalman filter (EKF) is also applied to merge the raw measurements from all the ULPSs into a final position estimate. Simulations and experimental tests were carried out and validated both approaches, thus providing average errors in the centimetre range for the EKF version, in contrast to errors up to the meter range from the independent (not merged) ULPSs.


2021 ◽  
Vol 13 (13) ◽  
pp. 7354
Author(s):  
Jiekun Song ◽  
Xiaoping Ma ◽  
Rui Chen

Reverse logistics is an important way to realize sustainable production and consumption. With the emergence of professional third-party reverse logistics service providers, the outsourcing model has become the main mode of reverse logistics. Whether the distribution of cooperative profit among multiple participants is fair or not determines the quality of the implementation of the outsourcing mode. The traditional Shapley value model is often used to distribute cooperative profit. Since its distribution basis is the marginal profit contribution of each member enterprise to different alliances, it is necessary to estimate the profit of each alliance. However, it is difficult to ensure the accuracy of this estimation, which makes the distribution lack of objectivity. Once the actual profit share deviates from the expectation of member enterprise, the sustainability of the reverse logistics alliance will be affected. This study considers the marginal efficiency contribution of each member enterprise to the alliance and applies it to replace the marginal profit contribution. As the input and output data of reverse logistics cannot be accurately separated from those of the whole enterprise, they are often uncertain. In this paper, we assume that each member enterprise’s input and output data are fuzzy numbers and construct an efficiency measurement model based on fuzzy DEA. Then, we define the characteristic function of alliance and propose a modified Shapley value model to fairly distribute cooperative profit. Finally, an example comprising of two manufacturing enterprises, one sales enterprise, and one third-party reverse logistics service provider is put forward to verify the model’s feasibility and effectiveness. This paper provides a reference for the profit distribution of the reverse logistics.


Sign in / Sign up

Export Citation Format

Share Document