Defect and its Influence on Mechanical Property of Titanium Diboride-Copper Matrix Composite

Author(s):  
Li Xu ◽  
Jie Cai Han ◽  
Xing Hong Zhang
2003 ◽  
Vol 57 (28) ◽  
pp. 4439-4444 ◽  
Author(s):  
Qiang Xu ◽  
Xinghong Zhang ◽  
Jiecai Han ◽  
Xiaodong He ◽  
V.L. Kvanin

2007 ◽  
Vol 336-338 ◽  
pp. 1339-1341
Author(s):  
Qiang Xu ◽  
Xing Hong Zhang ◽  
Jie Cai Han ◽  
Xiao Dong He

Titanium diboride nanoparticles reinforced copper matrix composite by combustion synthesis technology from titanium, boron and copper powders without other activated methods. Thermodynamics of the system was calculated theoretically. It was found that TiB2 was stable phase in the composite and TiCu interphase compound can convert into stable phase. The phases of the synthesized product were identified using X-ray diffraction and the results showed that only TiB2 and Cu phases, no other phases existed in the product. It is consistent with the calculated result of thermodynamics. SEM microstructural characterization showed that a homogenous distribution of the titanium diboride nanoparticles in the copper matrix.


2019 ◽  
Vol 6 (5) ◽  
pp. 056530
Author(s):  
Huiyan Xu ◽  
Zhenhua Li ◽  
Baoren Teng ◽  
Bo Ren ◽  
Xin Li

2013 ◽  
Vol 675 ◽  
pp. 231-234
Author(s):  
Tie Ming Guo ◽  
Chang Song Han ◽  
Jian Gang Jia ◽  
Ying Fu ◽  
Zhi Hui ◽  
...  

Thermodynamic calculations indicate that molybdenum particles reinforced copper-matrix composite can be fabricated in CuO-Al-MoO3 powder system. Thermit reaction and self-propagation high-temperature synthesis (SHS) were applied to prepare samples. Then the phases, structure morphologies and properties were studied through the instruments of XRD, SEM and microhardness tester. The results show that nanocrystals are formed in Cu matrix and molybdenum particles are dispersive distributed in Cu matrix. The microhardness of 5﹪Mo-Cu nanocomposite is 110HV,and the relative electric conductivity is 58.6﹪IACS.


2007 ◽  
Vol 534-536 ◽  
pp. 929-932 ◽  
Author(s):  
Tungwai Leo Ngai ◽  
Zhi Yu Xiao ◽  
Yuan Biao Wu ◽  
Yuan Yuan Li

Conventional powder metallurgy processing can produce copper green compacts with density less than 8.3 g/cm3 (a relative density of 93%). Performances of these conventionally compacted materials are substantially lower than their full density counterparts. Warm compaction, which is a simple and economical forming process to prepare high density powder metallurgy parts or materials, was employed to develop a Ti3SiC2 particulate reinforced copper matrix composite with high density, high electrical conductivity and high strength. In order to clarify the warm compaction behaviors of copper powder and to optimize the warm compaction parameters, effects of lubricant concentration and compaction pressure on the green density of the copper compacts were studied. Copper compact with a green density of 8.57 g/cm3 can be obtained by compacting Cu powder with a pressure of 700 MPa at 145°C. After sintered at 1000°C under cracked ammonia atmosphere for 60 minutes, density of the sintered compact reached 8.83 g/cm3 (a relative density of 98.6%). Based on these fabrication parameters a Ti3SiC2 particulate reinforced copper matrix composite was prepared. Its density, electrical conductivity, ultimate tensile strength, elongation percentage and tribological behaviors were studied.


Sign in / Sign up

Export Citation Format

Share Document