Laser Welding Characteristics of Cold Rolled Carbon Steel Utilize Continuous Wave Nd:YAG Laser

Author(s):  
Byung Heon Shin ◽  
Young Tae Yoo ◽  
Ho Jun Shin ◽  
Ji Hwan Kim
2007 ◽  
Vol 345-346 ◽  
pp. 1461-1464 ◽  
Author(s):  
Byung Heon Shin ◽  
Young Tae Yoo ◽  
Ho Jun Shin ◽  
Ji Hwan Kim

Laser welding process is widely used in the industrial area due to its less affects to base metal than general welding. Laser welding has characteristics that highly affect ratio, deeply penetration depth and small heat affected zone(HAZ) due to its in a short time melting and then solidification by a high energy absorption rate. The objective of this research work is to investigate the optimum conditions of a cold rolled carbon steel(SCP1) in a laser welding process using a Nd:YAG laser with a continuous wave(CW). The determination of optimum conditions were performed to change the laser power, beam speed, focus length and then carry out an butt welding. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding quality is 1325W of the laser power, 1.4m/min of laser welding speed and 0mm of focus position.


2004 ◽  
Vol 39 (19) ◽  
pp. 6117-6119 ◽  
Author(s):  
Young-Tae Yoo ◽  
Dong-Gyu Ahn ◽  
Kung-Bo Ro ◽  
Seong-Wook Song ◽  
Ho-Jun Shin ◽  
...  

2021 ◽  
Vol 39 (7) ◽  
pp. 1052-1059
Author(s):  
Mohammed J. Kadhim ◽  
Mahdi M. Hanon ◽  
Suhair A. Hussain

In this article a 1.8kW continuous wave of high power CO2 laser was used to clad of a titular composition of Ni – 10 wt% Al powder on cold rolled 0.2% carbon steel substrate. The feed rate was kept constant after many preliminary claddings at approximately 11 g/min.  In order to produce clads with different specific energies and interaction times, different traverse speeds were used in the range of 1.5 to 12.5 mm/s. The microstructure of substrate was changed at the heat affected zones under the variety of specific energies. The cladded coatings showed the presence of ɣ solid solution and β (NiAlFe) phases. A strong metallurgical bonding produced between the substrate and the clad coat at fluence higher than 48 J/mm2. The changing in microstructure were observed using both microscope and SEM. The microhardness was evaluated using Vickerʼs microhardness test. The microstructure of the substrate was ferrite and pearlite transformed to martensite at the region adjacent to the clad interface. It followed by a three regions can be classified, a grain growth zone (large grains of austenite/ferrite and pearlite), recrystallization zone (fine grains of austenite/ferrite and pearlite) and recovery zone (the structure has a little changes from the structure of low carbon steel). The microhardness testing result showed higher values for the clad regions compared with substrate. This study emphasize the possibility to develop a temporary new graded material.


2007 ◽  
Vol 546-549 ◽  
pp. 1305-1308 ◽  
Author(s):  
Min Xiao ◽  
Cheung Poon ◽  
Priti Wanjara ◽  
Mohammad Jahazi ◽  
Zouheir Fawaz ◽  
...  

Ni-based superalloys are extensively used in the manufacture of aircraft engine components because of their excellent heat-resistant and corrosion-resistant properties. The principal joining processes for Ni-based superalloys are TIG welding, MIG welding, submerged arc welding, electron beam welding, and CO2 laser welding. In this investigation, a robotic 4-kW continuous-wave Nd:YAG laser system was used to identify the optimal laser welding process for 2.0 mm thick Inconel (IN) 718 sheets. The effect of various processing parameters, which included power input, welding speed, weld geometry and filler wire, was studied using the Taguchi design of experiment (DOE) methodology. The DOE methodology enabled the evaluation of the relationship between the process parameters and the quality of the welded joints, from which the optimal Nd:YAG laser welding process was developed for IN718 alloy. Joint quality was examined by tensile and nondestructive testing methods. Using the optimal process established in this research, mechanically-sound welds with narrow fusion and heat-affected zones were produced. The outcome of this research demonstrates the feasibility of the application of Nd:YAG laser in the joining of IN718 sheets for the manufacture of aircraft engine components.


2002 ◽  
Vol 14 (3) ◽  
pp. 136-145 ◽  
Author(s):  
Kenichi Kamimuki ◽  
Takashi Inoue ◽  
Kouzou Yasuda ◽  
Mikio Muro ◽  
Tokuhiro Nakabayashi ◽  
...  

2007 ◽  
Vol 345-346 ◽  
pp. 1445-1448 ◽  
Author(s):  
Ho Jun Shin ◽  
Young Tae Yoo ◽  
Byung Heon Shin ◽  
Ji Hwan Kim

Dissimilar metal welding (DMW) are used widely in various industrial applications due to the practical importance from the technical and economic aspect. However, DMW have several fabricative and metallurgical drawbacks that can often lead to in-service failures. For example, the most pronounced fabrication faults are hot cracks. Recently, DMW have used the several of heat source to decrease such as faults. Laser welding process has, in recent years, attracted more attention due to its special features: a small heat-affected zone and narrow weld bead due to the low heat input; welding at high speed; welding can be carried out in areas of difficult access; contactless energy transfer; welding in an exact and reproducible manner; possibilities for automation and robotization, and welding performed in various atmospheres. In this paper, the weldability on dissimilar metal welding of austenite stainless steel and carbon steel using Nd:YAG laser with a continuous wave was experimentally investigated.


2008 ◽  
Vol 580-582 ◽  
pp. 463-466
Author(s):  
Guo Liang Qin ◽  
Xu You Wang ◽  
Shang Yang Lin

Based on the bead on plate test and the effects of heat input on weld penetration, the equivalence between 2 kW CW (Continuous Wave) Nd:YAG laser power and pulsed GMA(Gas Metal Arc) power and the effect of welding speed on their equivalent ratios in welding carbon steel and Al alloy were studied. The studied results show that 9.8 kW pulsed GMA power is needed to reach the same weld penetration depth with 2 kW CW Nd:YAG laser power for welding of low carbon steel at v=1.2 m/min; for Al alloy, it is 3.92 kW pulsed GMA power. The equivalent ratios of 2 kW Nd:YAG laser power and pulsed GMA power are 4.9~6.4 and 1.85~2.1 times at different welding speed for low carbon steel and Al alloy, respectively. But their equivalent ratios have different variations with welding speed; at which the equivalent ratio of low carbon steel increases with welding speed and that of Al alloy decreases. The studied results offer the experimental boundary of heat input for analyzing the effect of Nd:YAG laser power and pulsed GMA power on laser+pulsed GMA hybrid welding process.


Sign in / Sign up

Export Citation Format

Share Document