Micromechanical Analysis of Constraint Effect on Fracture Initiation in Strength Mismatched Welded Joints

Author(s):  
M. Dobrojević ◽  
Marko Rakin ◽  
Nenad Gubeljak ◽  
Ivana Cvijović ◽  
Misa Zrilić ◽  
...  
Author(s):  
X. Wang ◽  
R. Bell ◽  
S. B. Lambert

The loss of crack tip constraint leads to enhanced resistance to both cleavage and ductile tearing. However, conventional failure assessment schemes (CEGB-R6, BS-7910) use lower bound toughness obtained from highly constrained test specimens. Cracks in many real engineering structures are not highly constrained, which makes failure predictions using conventional failure assessment schemes based on lower bound fracture toughness values overly pessimistic. Excessive pessimism in the structural assessment can lead to unwarranted repair or decommissioning of structures, and thus cause unneeded cost and inconvenience. Recent developments on constraint-based fracture mechanics have enabled the practical assessment of defective components including the constraint effect. For example, the recent revision of R6 and the newly developed structural integrity assessment procedures for European industry (SINTAP) have suggested a framework for failure assessments including the constraint effect. In this paper, the constraint-based failure assessment of surface cracked T-plate welded joints under tension load is presented. Different issues including the constraint-based failure assessment diagrams, the treatment of combining primary and the secondary loads, and the calculation of stress intensity factors, limit loads and constraint parameters for surface cracked T-plate joints are discussed. It is demonstrated that when the lower constraint effect is properly accounted for, the maximum allowable tensile stress level increases substantially.


2015 ◽  
Vol 9 (1) ◽  
pp. 859-864
Author(s):  
Tielong Li ◽  
Zhenshan Wang

For hot extrusions of magnesium alloy sheets, Dissimilar AZ80 and AZ31 were used, in which AZ80 was placed on advancing side and AZ31 on retreating side, using friction stir butt welding with different process parameters. Some defect-free welded joints with good weld surfaces could be obtained with some suitable welding conditions. The maximum tensile strength of welded joint which is 225.5 MPa can reach 98% that of the AZ31 base material. Influence of process parameters on defects, weld shaping and mechanical property were discussed systematically. And the microstructure of different zones was compared. The fracture of the welded joints takes place at the junction of mechanical heat affected zone and nugget zone in AZ31 magnesium alloy set retreating side, since existing difference in metallographic structure of alloy diversely suffered by heat, pressure and depositing impurities. Fracture initiation site may be the P line defect which should be eliminated, and the P line defect formation was analyzed.


2007 ◽  
Vol 555 ◽  
pp. 571-576 ◽  
Author(s):  
M. Dobrojević ◽  
Marko Rakin ◽  
Nenad Gubeljak ◽  
Ivana Cvijović ◽  
Misa Zrilić ◽  
...  

In this paper the micromechanical approach to ductile fracture was applied in a study of constraint effect on crack growth initiation in mismatched welded joints. The single-edged notched bend specimens (precrack length a0/W=0.32) were experimentally and numerically analyzed. The coupled micromechanical model proposed by Gurson, Tvergaard and Needleman was used. Constraint effect was tested by varying widths of the welded joints (6, 12 and 18mm). Highstrength low-alloyed (HSLA) steel was used as the base metal in a quenched and tempered condition. The flux-cored arc-welding process in shielding gas was used. Two different fillers were selected to obtain over- and undermatched weld metal. The micromechanical parameters used in prediction of the crack growth initiation on precracked specimen were calibrated on a round smooth specimen. The difference in fracture behavior between over- and undermatched welded joints obtained in experimental results was followed by numerical computations of void volume fraction in front of the crack tip.


1975 ◽  
Vol 1975 (138) ◽  
pp. 434-443
Author(s):  
Masahiro Toyosada ◽  
Tosiyuki Kunihiro ◽  
Yukimasa Kuwabe ◽  
Yosiaki Kawaguchi

Author(s):  
Hitoshi Furuya ◽  
Naoki Saitoh ◽  
Yasunori Takahashi ◽  
Katsumi Kurebayashi ◽  
Yoichi Kayamori ◽  
...  

9% Ni steel has been used for LNG storage tanks for more than four decades although 5.5% Ni steel (N-TUF CR196) was developed in the 1970’s using a special heat treatment method named L-treatment. The reason why the actual application of 5.5% Ni steel has not been attained to LNG storage tanks is mainly because the requirement of fracture properties is not confirmed for the tanks. Under the circumstances of expanding demand for natural gas and double-integrity in LNG storage tanks, we restarted developing low Ni steel for LNG storage tanks by using both conventional and advanced techniques. For the application of low Ni steel to the present LNG storage tanks, both fracture initiation and propagation properties of base metal plates and welded joints should be concerned. The fracture initiation and propagation properties of base metal were compensated with the intercritical reheating process (L-treatment), and the propagation property was additionally enhanced by combining TMCP with L-treatment. In addition, the chemical composition adjustment and the homogenization treatment of solute elements were conducted for improving the fracture initiation and propagation properties of welded joints. 6% Ni steel plates were manufactured by the process of continuous casting, reheating, hot rolling, direct quenching (TMCP), L-treatment, and tempering, and their chemical composition was 0.05C-0.06Si-1.0Mn-6.3Ni-Cr-Mo. As the results of fracture property evaluation including large-scale fracture tests such as the duplex ESSO test and the wide plate tensile test, it was demonstrated that 6% Ni steel has good characteristics regarding brittle fracture initiation and propagation in base metal plates and welded joints.


Sign in / Sign up

Export Citation Format

Share Document