Study of the Metal Crack Propagation by Acoustic Emission Testing

2011 ◽  
Vol 105-107 ◽  
pp. 2179-2182
Author(s):  
Wei Min Zhang ◽  
Shu Xuan Liu ◽  
Yong Qiu ◽  
Cheng Feng Chen

Crack propagation is the main reason which leads to the invalidity of the metal components. A set of detecting equipment based on the acoustic emission method was designed, and it was mainly composed of acoustic emission sensor, signal operating circuits and signal acquisition system. Specimens of 16MnR material were manufactured and the static axial tension test of them was carried on. Acoustic emission signals from the specimen were detected by acoustic emission equipment by using piezoelectric ceramic sensor. Signal datum were acquired and operated by the acquisition system, as well as the acquisition program written for it. The final results has demonstrated that acoustic emission equipment designed for the test performed well in acquiring the signals induced by the metal crack propagation.

2014 ◽  
Vol 487 ◽  
pp. 58-62
Author(s):  
Jun Kang ◽  
Peng Sheng Xie ◽  
Yuan Li ◽  
Jia Lin Zhu ◽  
Li Li

In this paper, we produced the 0-3 PZT/P(VDF-TFE) piezoelectric composite film with 80μm thickness using PZT piezoelectric ceramics and fluorine resin P(VDF-TFE) by weight 85/15 ingredients through the hot rolling machine and corona-discharge method. A sensor with 4cm×1.3cm area is designed and produced by using this film. We have carried out the breaking of a pencil lead pressed against an aluminum plate acoustic emission testing. The result shown that the sensor is with fast response and high sensitivity advantage, the sensor can be used as acoustic emission sensor. Meanwhile the sensor is very easy to use due to it is a soft film sensor.


2021 ◽  
Vol 11 (14) ◽  
pp. 6550
Author(s):  
Doyun Jung ◽  
Wonjin Na

The failure behavior of composites under ultraviolet (UV) irradiation was investigated by acoustic emission (AE) testing and Ib-value analysis. AE signals were acquired from woven glass fiber/epoxy specimens tested under tensile load. Cracks initiated earlier in UV-irradiated specimens, with a higher crack growth rate in comparison to the pristine specimen. In the UV-degraded specimen, a serrated fracture surface appeared due to surface hardening and damaged interfaces. All specimens displayed a linearly decreasing trend in Ib-values with an increasing irradiation time, reaching the same value at final failure even when the starting values were different.


2006 ◽  
Vol 13-14 ◽  
pp. 195-200
Author(s):  
Athanasios Anastasopoulus ◽  
S. Bousias ◽  
A. Tsimogiannis ◽  
T. Toutountzakis

Acoustic Emission (AE) monitoring was performed during Pseudo-Dynamic Testing of a torsionally unbalanced, two-storey, one-by-one bay reinforced concrete frame structure. The structure represented a 0.7-scale model of a real-size frame structure designed and detailed according to the standards prevailing in Greece in 60's, without engineered earthquake resistance. Real time monitoring of AE activity versus the complex applied load resulted in semi quantitative damage characterization as well as comparative evaluation of the damage evolution of the different size columns. Evolution of the AE energy rate per channel, as revealed from zonal location, and the energy rate of linearly located sources enabled the identification of damage areas and the forecast of crack locations before cracks were visible with naked eye. In addition to that, the results of post processing evaluation allowed for the verification of the witnessed damaged areas and formed the basis for quantitative assessment of damage criticality.


Sign in / Sign up

Export Citation Format

Share Document