Measurement and Analysis of Cutting Force and Optimization of Cutting Parameters by High Speed Milling

2011 ◽  
Vol 141 ◽  
pp. 344-349
Author(s):  
Hu Zeng Li ◽  
Yi Wang ◽  
Nai Xiong Zhu ◽  
Rao Bo Hu ◽  
Chong Zhang ◽  
...  

The measurement method and apparatus of cutting force by high speed milling is introduced. The high speed milling force of wrought aluminum alloy is measured and analyzed through separately examining the influences of various factors, such as cutting speed, cutting depth, milling width, feed per cutting tooth, down or up milling, cooling and lubricating. The results match with outcomes from other’s tests and the theory of metal cutting, and are close to the calculated force values, so that the test can be regarded as positive. It is pointed out that high cutting speed, little cutting depth, properly great working engagement and feed per tooth, high feed rate, down milling and efficient cooling and lubricating should be used to reduce cutting force and deformation, to improve milling accuracy and efficiency, which can be helpful to the spread applications of High Speed Machining.

2014 ◽  
Vol 800-801 ◽  
pp. 42-47 ◽  
Author(s):  
Peng Fei Sun ◽  
Jian Fei Sun ◽  
Wu Yi Chen ◽  
Xun Shen

Experiments were carried out to investigate the cutting force and tool wear behavior of Sialon ceramic tools in high speed milling of GH4169 under different cutting parameters. The cutting speed exhibited the most significant influence on the cutting force. The cutting force decreased firstly then increased with the increasing of cutting speed. And the effect of feed speed and cutting depth on cutting force were also discussed. The worn surfaces of tool were examined and the elements on the tool surfaces were analyzed by employing scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. The analysis results of the SEM and EDS showed that the dominant wear pattern were rake face flaking and notching at the low cutting speed while flank wear was the main wear type at the high cutting speed of 1037m/min.


2013 ◽  
Vol 395-396 ◽  
pp. 1026-1030 ◽  
Author(s):  
Zhao Lin Zhong ◽  
Xing Ai ◽  
Zhan Qiang Liu

This paper presents the experimental results of cutting force and surface roughness of 7050-T7451 aluminum alloy under the cutting speed of 3000~5000m/min. The cutting forces and surface roughness with different cutting parameters were analyzed. Experimental results suggested that increasing cutting speed would engender thermal softening, which would in return affect the cutting force and surface roughness in high speed milling. The cutting force and surface roughness were affected by cutting depth and feed rate obviously. Surface roughness was also affected by cutting width which changed the cutting force slightly. According to the results, proper parameters could be selected and thermodynamic relationship needed to be discussed for further research.


2013 ◽  
Vol 834-836 ◽  
pp. 861-865 ◽  
Author(s):  
Yong Shou Liang ◽  
Jun Xue Ren ◽  
Yuan Feng Luo ◽  
Ding Hua Zhang

An experimental study was conducted to determine cutting parameters of high-speed milling of Ti-17 according to their effects on residual stresses. First, three groups of single factor experiments were carried out to reveal the effects of cutting parameters on residual stresses. Then sensitivity models were established to evaluate the influence degrees of cutting parameters on residual stresses. After that, three criteria were proposed to determine cutting parameters from experimental parameter ranges. In the experiments, the cutting parameter ranges are recommended as [371.8, 406.8] m/min, [0.363, 0.412] mm and [0, 0.018] mm/z for cutting speed, cutting depth and feed per tooth, respectively.


2014 ◽  
Vol 494-495 ◽  
pp. 602-605
Author(s):  
Zeng Hui An ◽  
Xiu Li Fu ◽  
Ya Nan Pan ◽  
Ai Jun Tang

Cutting forces is one of the important physical phenomena in metal cutting process. It directly affects the surface quality of machining, tool life and cutting stability. The orthogonal experiments of cutting forces and influence factors with indexable and solid end mill were accomplished and the predictive model of milling force was established during high speed end milling 7050-T7451 aluminum alloy. The paper makes research mainly on the influence which the cutting speed, cutting depth and feed have on the cutting force. The experimental results of single factor showed that the cutting forces increase earlier and drop later with the increase of cutting speed, and the cutting speed of inflexion for 7050-T7451 is 1100m/min. As axial cutting depth, radial cutting depth and feed rate increase, the cutting force grows in different degree. The cutting force is particularly sensitive to axial cutting depth and slightly to the radial cutting depth.


2013 ◽  
Vol 770 ◽  
pp. 106-109 ◽  
Author(s):  
Jie Xu ◽  
Bin Rong ◽  
Hong Zhou Zhang ◽  
Dong Sheng Wang ◽  
Liang Li

Titanium alloys are widely used in aviation and aerospace industry due to their special mechanical properties. In the process of machining titanium alloys, cutting force is an important physical quantity. In this paper, a series of experiments were carried out to investigate the cutting force in detail during high feed milling of titanium alloy Ti6Al4V with different high feed cutters. Effects of cutting parameters, such as milling speed, feed per tooth, radial cutting depth and axial cutting depth on cutting force were analyzed. The results showed that cutting force presented an obvious increasing trend with the increase of feed per tooth and axial cutting depth. However, the effects of cutting speed and radial cutting depth on cutting force were not obvious.


2013 ◽  
Vol 395-396 ◽  
pp. 1031-1034
Author(s):  
Can Zhao ◽  
Yu Bo Liu

This paper makes an experiment in high-speed milling of Inconel 718. Cutting tests were performed using round and ceramic tools, at feeds from 0.06 to 0.14 mm/tooth, Axial Depth of Cut from0.5 to 1.5mm,and cutting speeds ranging from 500 to 1037 m/min. The behaviour of the cutting forces during machining was then measure. The results show that cutting force increases first and then decreases with the increase of feed per tooth, the tool chipping and groove wear were found with the increase of axial cutting depth, and cutting force is increased; the increase in cutting force with the cutting speed increases, when the cutting speed reaches a critical speed, the cutting force as the cutting speed increases began to decline.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1526
Author(s):  
Cheng-Hsien Kuo ◽  
Zi-Yi Lin

Most aerospace parts are thin walled and made of aluminum or titanium alloy that is machined to the required shape and dimensions. Deformation is a common issue. Although the reduced cutting forces used in high-speed milling generate low residual stress, the problem of deformation cannot be completely resolved. In this work, we emphasized that choosing the correct cutting parameters and machining techniques could increase the cutting performance and surface quality and reduce the deformation of thin plates. In this study, a part made of a thin 6061 aluminum alloy plate was machined by high-speed milling (HSM), and a Taguchi L16 orthogonal array was used to optimize the following parameters: linear velocity, feed per tooth, cutting depth, cutting width, and toolpath. The impact of cutting parameters on the degree of deformation, surface roughness, as well as the cutting force on the thin plate were all investigated. The results showed that the experimental parameters for the optimal degree of deformation were A1 (linear velocity 450 mm/min), B1 (feed per tooth 0.06 mm/tooth), C1 (cutting depth 0.3 mm), D4 (cutting width 70%), and E4 (rough zigzag). Feed per tooth was the most significant control factor, with a contribution as high as 63.5%. It should also be mentioned that, according to the factor response of deformation, there was a lower value of feed per tooth and less deformation. Furthermore, the feed per tooth and the cutting depth decreased and the surface roughness increased. The cutting force rose or fell with an increase or decrease of cutting depth.


2011 ◽  
Vol 338 ◽  
pp. 709-713
Author(s):  
Zhen Hua Wang ◽  
Jun Tang Yuan

In this paper, 24full factorial design and homogeneous design were applied to the high-speed milling experiments for Mg-6Nd-4Gd-3Y magnesium alloy. According to the experimental results of cutting force, the effect of cutting parameters (cutting speed, feed per tooth, depth of cut, and width of cut) on cutting force was discussed, and the nonlinear polynomial regression models of cutting forces based on the cutting parameters were presented by the partial least-square regression.


2012 ◽  
Vol 468-471 ◽  
pp. 1467-1470 ◽  
Author(s):  
Rui Jie Wang ◽  
Yong Liang Zhang ◽  
Hong Bin Liu ◽  
Mao Hua Du

Experimental study on surface finish of high speed mill of hardened 45 steel was carried out with PCBN tool. Cutting parameters studied include different cutting depth, cutting speed and feeding speed. Surface finish after cutting were measured and compared with that of grinding. Experimental results showed that for high speed milling of hardened 45 steel, the surface finish can be very fine, different cutting parameters all have explicit effect on surface finish.


2014 ◽  
Vol 800-801 ◽  
pp. 793-797
Author(s):  
Can Zhao ◽  
Zi Biao Wang ◽  
Xue Hui Wang ◽  
Wang Xi ◽  
Yang Yang Shi

Nickel-base superalloy GH4169 is a kind of alloy with high intensity, heat-stability and heat-fatigability, so that is often used to aerospace field, but which has poor machinability. The cutting force, plasticity deformation all present their particular characters which causes cutting vibration . The cutting vibration influence the surface roughness, the swing of the cutting force and tool wear. This article discusses the superalloy of GH4169 on the basis of cutting speed, cutting depth and feed per-tooth.


Sign in / Sign up

Export Citation Format

Share Document