Shape Optimization of High-Speed Train Pantograph Insulators for Low Aerodynamic Noise

2012 ◽  
Vol 249-250 ◽  
pp. 646-651
Author(s):  
Xiao Yan Yang ◽  
You Gang Xiao ◽  
Yu Shi

With large eddy simulation(LES) and Lighthill-Curle acoustic theory, the aerodynamic noises radiated from pantograph insulators with rectangular, circular, elliptical section were calculated, and the optimal pantograph insulator shape was obtained. The results show that in the same model, the sound pressure level (SPL) spectrum at different monitoring points are basically the same, but the amplitude is different. In different models, the SPL spectrum are different. As for rectangular, circular, elliptical section insulators, the frequency with maximum SPL reduces gradually. For reducing aerodynamic noise, the elliptical section insulator is optimal, and the long elliptical axis should be consistent with air flow. The pantograph with bigger and less components is helpful to reduce the aerodynamic noise.

2018 ◽  
Vol 37 (3) ◽  
pp. 590-610 ◽  
Author(s):  
Wen-Qiang Dai ◽  
Xu Zheng ◽  
Zhi-Yong Hao ◽  
Yi Qiu ◽  
Heng Li ◽  
...  

The aerodynamic noise has been the dominant factor of noise issues in high-speed train as the traveling speed increases. The inter-coach windshield region is considered as one of the main aerodynamic noise sources; however, the corresponding characteristics have not been well investigated. In this paper, a hybrid method is adopted to study the aerodynamic noise around the windshield region. The effectiveness of simulation methods is validated by a simple case of cavity noise. After that, the Reynolds-averaged Navier–Stokes simulation is used to obtain the characteristics of flow field around the windshield region, which determine the aerodynamic noise. Then the nonlinear acoustic solver approach is employed to acquire the near-field noise, while the Ffowcs-Williams/Hawking equation is solved for far-field acoustic propagation. The results indicate that the windshield region is approximately an open cavity filled with severe disturbance flow. According to the analysis of sound pressure distribution in the near-acoustic field, both sides of the windshield region appear symmetrical two-lobe shape with different directivities. The results of frequency spectrum analysis indicate that the aerodynamic noise inside inter-coach space is a typical broadband one from 100 Hz to 5k Hz, and most acoustic power is restricted in the low-medium frequency range (below 500 Hz). In addition, the acoustic power in the low frequency range (below 100 Hz) is closely related to the cavity resonance with the resonance peak frequency of 42 Hz. The overall sound pressure level at different speeds shows that the acoustic power grows approximately 5th power of the train speed. Two forms of outside-windshields are designed to reduce the noise around the windshield region, and the results show the full-windshield form is better in noise reduction, which apparently eliminates interior cavity noise of inter-coach space and lessens the overall sound pressure level on the sides of near-field by about 13 dB.


2014 ◽  
Vol 1049-1050 ◽  
pp. 1022-1025
Author(s):  
Xiao Feng Zhang ◽  
You Gang Xiao ◽  
Liang Sun ◽  
Yu Shi

In order to reduce aerodynamic noise in high-speed train cab,the SEA model of cab is established. The fluctuation pressures from train head surface are calculated by large eddy simulation method. Using fluctuation pressure as excitation force, power flow caused by airflow among sub-systems of SEA model of cab is obtained. Two schemes are put forward to reduce the aerodynamic noise in cab, namely interior decoration modification and windowpane thickness increase. The results show that when a layer of splint with 0.01 m thickness, 0.5 loss factor is added to the original decoration in cab, the overall sound pressure level (SPL) at driver head location will reduce 1.23 dB(A). When the cab windowpane thickness is increased to 5 mm from 4 mm, the overall SPL at the driver head location will reduce 0.87 dB(A).


2014 ◽  
Vol 675-677 ◽  
pp. 257-260 ◽  
Author(s):  
Di Wu ◽  
Jian Min Ge

In this paper, the finite element (FE) method was used for simulation of the low-frequency sound field in high speed train compartments. The proposed model was validated using experimental results. The FE models of the train compartments with and without racks were established respectively, and the sound pressure level of the standard point and sound field distribution in these two cases were compared. The results showed that the A-weighted sound pressure level of the standard point was 1.2 dB lower when there is no rack in the compartment.


2019 ◽  
Vol 9 (11) ◽  
pp. 2332 ◽  
Author(s):  
Yongfang Yao ◽  
Zhenxu Sun ◽  
Guowei Yang ◽  
Wen Liu ◽  
Prasert Prapamonthon

The high-speed-train pantograph is a complex structure that consists of different rod-shaped and rectangular surfaces. Flow phenomena around the pantograph are complicated and can cause a large proportion of aerodynamic noise, which is one of the main aerodynamic noise sources of a high-speed train. Therefore, better understanding of aerodynamic noise characteristics is needed. In this study, the large eddy simulation (LES) coupled with the acoustic finite element method (FEM) is applied to analyze aerodynamic noise characteristics of a high-speed train with a pantograph installed on different configurations of the roof base, i.e. flush and sunken surfaces. Numerical results are presented in terms of acoustic pressure spectra and distributions of aerodynamic noise in near-field and far-field regions under up- and down-pantograph as well as flushed and sunken pantograph base conditions. The results show that the pantograph with the sunken base configuration provides better aerodynamic noise performances when compared to that with the flush base configuration. The noise induced by the down-pantograph is higher than that by the up-pantograph under the same condition under the pantograph shape and opening direction selected in this paper. The results also indicate that, in general, the directivity of the noise induced by the down-pantograph with sunken base configuration is slighter than that with the flush configuration. However, for the up-pantograph, the directivity is close to each other in Y-Z or X-Z plane whether it is under flush or sunken roof base condition. However, the sunken installation is still conducive to the noise environment on both sides of the track.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jufeng Su ◽  
Yamin Sun ◽  
Yuyang Liu

To study complexity distributions of unsteady flow field and aerodynamic noise of a high-speed railway on bridges, an aerodynamic noise model of a railway was obtained. Meanwhile, detailed structures such as 6 bogies, 3 air conditioning units, 1 pantograph fairing, and 1 pantograph were considered. Numerical simulation was conducted to flow fields around the high-speed railway running on the bridge under a crosswind-free environment, with running speed of 350 km/h. Hence, unsteady flow behavior characteristics of the complete high-speed railway were obtained. Numerical simulation was conducted to noises of the railway on the bridge in combination with detached eddy simulation and acoustic analogy theory. Meanwhile, the broadband noise model was used for the quantitative analysis on distribution characteristics of the dipole noise source and quadrupole noise source of the high-speed railway on the bridge. Studied results proved that aerodynamic noise of the railway was caused by eddy shedding and fluid separation. Main noise sources of the high-speed railway include areas such as pantographs, train head streamline, bogies, windshield, and an air conditioning unit. Maximum sound pressure level and average sound pressure level of the high-speed railway on the bridge were 2.7 dBA and 2.3 dBA, respectively, more than those of the high-speed railway on a flat ground. On the bridge, the maximum sound pressure level of the pantograph on the bridge was 3.1 dBA larger than that on the flat ground. In addition, incoming flows of the high-speed railway on the bridge had greater impacts on aerodynamic noises around the railway compared with those of wake flows. Meanwhile, in directions of incoming flows and wake flows, linear relationship was between the sound pressure levels of noise monitoring points which had different distances from the train head nose and the logarithm of the distances.


Author(s):  
Chunli Zhu ◽  
Hassan Hemida ◽  
Dominic Flynn ◽  
Chris Baker ◽  
Xifeng Liang ◽  
...  

The flow field and sound propagation around a three-coach 1/8th scale high-speed passenger train were obtained using a detached-eddy simulation and the Ffowcs-Williams and Hawkings acoustic analogy. The Reynolds number of flow based on the train height and speed was 2,000,000. The numerical results of the flow and aeroacoustic fields were validated using wind tunnel experiments and full-scale data, respectively. Features of overall sound pressure level, sound pressure level and A-weighted sound pressure level of typical measuring points are discussed. The sound propagated by a high-speed train is shown as a broadband noise spectrum including tonal component, where high sound pressure levels are concentrated on the low-frequency range from 10 Hz to 300 Hz. The inter-carriage gap is found to cause distinct tonal noise in contrast to the other parts of the train that cause a broadband noise. The negative log law has been used to study the influence of distance from the centre of track on the sound pressure level, where a good fit is shown at low-frequency ranges. The peak values of A-weighted sound pressure level from both full-scale experiment and simulation results occur at approximately 1 kHz, where simulation results show almost the same range as the experiment. The surface of each component of the train as well as the whole train are chosen as the integral surface for the Ffowcs-Williams and Hawkings computation of the far-field noise characteristics. It was found that the sound source generated by a high-speed train is mainly dipole, and the largest noise was obtained from the leading bogie. The results of this paper provide, for the first time, a better understanding of the aeroacoustic field around a three-coach train model, and the paper has the potential to assist engineers to design high-speed trains with aeroacoustic noise reduction in a better manner.


Author(s):  
Menghao Wang ◽  
Xiaomin Liu

Airfoil is the basic element of fluid machinery and aircraft, and the noise generated from that is an important research aspect. Aiming to reduce the aerodynamic noise around the airfoil, this study proposes an airfoil inspired by the long-eared owl wing and another airfoil coupled with the bionic airfoil profile, leading edge waves, and trailing edge serrations. Numerical simulations dependent on the large eddy simulation method coupled with the wall-adapting local eddy-viscosity model and the Ffowcs Williams and Hawkings equation are conducted to compare the aerodynamic and acoustic characteristics of two types of bionic airfoils at low Reynolds number condition. The simulations reveal the dipole characteristic of acoustic source and sound pressure level distribution at various frequencies. Two types of bionic airfoils show lower noise compared with the conventional NACA 0012 airfoil with a similar relative thickness of 12%. Compared with the bionic airfoil, the average value of sound pressure level at the monitoring points around the bionic coupling airfoil is decreased by 9.94 dB, meanwhile the lift-to-drag ratio also keep higher. The bionic coupling airfoil exerts a suppression of sound pressure fluctuation on the airfoil surfaces, which result from that the range and size of separation vortices are reduced and the distance between vortices and airfoil surface are increased. The tube-shaped vortices in the wake of airfoil are effectively restrained and split into small scale vortices, which are important to cause less aerodynamic noise around the bionic coupling airfoil. Consequently, a novel bionic coupling airfoil is developed with the excellent aerodynamic and acoustic performance.


2013 ◽  
Vol 664 ◽  
pp. 191-196
Author(s):  
You Gang Xiao ◽  
Yu Shi

For clarifying the noise in tunnel affected by pantograph and bogie, which are the most important noise sources, the noises near pantograph and bogie in a high-speed train were tested by multi-channel noise measurement and analysis system in tunnel, and compared with those measured outside the High-speed train and on an open field. The results show that the interior vehicle noise is spatially non-homogeneous in the whole carriage, the larger sound pressure level (SPL) near pantograph are next to ceiling, and near bogie next to floor. The noise spectra show a broad band feature, and dominated by the frequency contents among 100Hz-2kHz, so the countermeasures against noise should be within these range.


Author(s):  
Li Zhang ◽  
Yingzi Jin ◽  
Yi Zhao ◽  
Pin Liu

To explore the effect of blade numbers on aerodynamic performance and noise of small axial flow fan, the steady flow field and the unsteady flow field of fan models with 6 different blade numbers (such as 5, 7, 9, 11, 13, 15) are numerically calculated. Then the internal flow distribution, static characteristic and aerodynamic noise are analyzed among six different fan models. The analysis results show: (1)Total pressure and efficiency generally maintain the trend of first increasing and then decreasing with increasing blade numbers, and it is the maximum when fan blade number is 11. The flow rate coupled with the maximum efficiency has never changed with increasing the blade numbers. (2)With increasing blade numbers, overall sound pressure level of the aerodynamic noise is gradually decreasing near the outlet of fan tip, while it is first decreasing and then increasing before decreasing again at 1 meter away from the central axis of the impeller along the outlet. When fan blade number is 11, overall sound pressure level of the aerodynamic noise is the greatest. Furthermore, the aerodynamic performance tests of fan models with 6 different blade numbers are carried out, the results of between the tests and the numerical calculations are roughly consistent. The research results will provide the proof of the parameter optimization and the structure design for high performance and low noise small axial fans.


2020 ◽  
Vol 34 (14) ◽  
pp. 2050145
Author(s):  
Rennian Li ◽  
Wenna Liang ◽  
Wei Han ◽  
Hui Quan ◽  
Rong Guo ◽  
...  

In order to investigate the turbulence-induced acoustic characteristics of hydrofoils, the flow and sound field for a model NH-15-18-1 asymmetric hydrofoil were calculated based on the mixed method of large eddy simulation (LES) with Lighthill analogy theory. Unsteady fluid turbulent stress source around the hydrofoil were selected as the inducements of quadrupole sound. The average velocity along the mainstream direction was calculated for different Reynolds numbers [Formula: see text]. Compared to experimental measurements, good agreement was seen over a range of [Formula: see text]. The results showed that the larger the [Formula: see text], the larger the vortex intensity, the shorter the vortex initial shedding position to the leading edge of the hydrofoil, and the higher the vortex shedding frequency [Formula: see text]. The maximum sound pressure level (SPL) of the hydrofoil was located at the trailing edge and wake of the hydrofoil, which coincided with the velocity curl [Formula: see text] distribution of the flow field. The maximum SPL of the sound field was consistent with the location of the vortex shedding. There were quadratic positive correlations between the total sound pressure level (TSPL) and the maximum value of the vortex intensity [Formula: see text] and velocity curl, which verified that shedding and diffusion of vortices are the fundamental cause of the generation of the quadrupole source noise.


Sign in / Sign up

Export Citation Format

Share Document