A Hysteresis Restoring Force Model of Disc-Shaped Metal Rubber Isolation Component

2012 ◽  
Vol 271-272 ◽  
pp. 186-189 ◽  
Author(s):  
Feng Li Cao ◽  
Hong Bai Bai ◽  
Zhong Bo He ◽  
Guo Quan Ren

Dynamic load experiments of the disc-shaped metal rubber isolation component are performed. Through analyzing variation law of the parameters with amplitude and frequency, which are stiffness coefficient, damping coefficient and damping component factor, the hysteresis restoring force model which is able to fully reveal the dynamic characteristics of the component is established. The experimental verification results show that the theoretic calculations are consistent with the experimental data, which verifies the practicability and effectiveness of mathematical model and parameter identification. It has important practical significance for design of vibration isolation component with different requirements.

2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Huang-bin Lin ◽  
Shou-gao Tang ◽  
Cheng Lan

In the dynamic time-history analysis of structural elastoplasticity, it is important to develop a universal mathematical model that can describe the force-displacement characteristics for restoring force. By defining three control parameters (stiffness degradation, slip closureγ, energy degradationβ), the Park restoring force mathematical model can simulate various components. In this study, the Park restoring force has been improved by adding two control parameters (energy-based strength degradationβeand ductility-based strength degradationβd). Based on the testing data, the constitutive model is input and 55 numerical models are developed to analyze the effects of various parameters on structural behavior.Conclusion. (1)βhas determinative effect on structural behavior; the effect ofβeis basically consistent with that ofβ;αhas significant effect on shear forces and bending moments;γhas significant effect on displacements and accelerations;βdhas significant effect on shearing forces, acceleration, and total energy consumptions. (2) Based on the classification of four types of damage level, the recommended values forα,γ,β,βe, andβdare presented. (3) Based on the testing data of high-strength columns, the recommended values for the five control parameters of the improved Park restoring force model are presented.


2013 ◽  
Vol 275-277 ◽  
pp. 1045-1048
Author(s):  
Pin Le Zhang

Restoring force model is a simplified mathematical model derived from restoring force-deformation curves in lots of tests. Selecting a reasonable restoring force model is the basis of conducting dynamic nonlinear analysis of structure. The work further investigates the advantage and disadvantage of the restoring force models presented in this paper. Classified and brief comments about the existing drawbacks of restoring force models and its application are conducted. Lastly, some useful suggestions are proposed for the further research.


2018 ◽  
Vol 21 (13) ◽  
pp. 2018-2029
Author(s):  
Xide Zhang ◽  
Zhiheng Deng ◽  
Xiaofang Deng ◽  
Jingwei Ying ◽  
Tao Yang ◽  
...  

To evaluate the ductility and energy dissipation capacity of the beam with concrete-encased steel truss, eight specimens with different types of steel truss, reinforcement ratios, and shear span ratios were tested by low-cyclic loading regime. The results indicated that beams with concrete-encased steel truss performed plumped load–displacement hysteretic loops as well as high strength and stiffness. Moreover, cross-web members improved their seismic behavior more effectively than non-cross-web members. Finally, the restoring force model of concrete-encased steel truss beam is proposed in accordance with the experimental results, which can be used to predict the load–displacement behavior of concrete-encased steel truss beam. The results could also provide a reference for the design and application of concrete-encased steel truss beam in practice.


Author(s):  
Li Shufeng ◽  
Li Qingning ◽  
Zhao Di ◽  
Zhang Jiaolei ◽  
Yuan Dawei ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
pp. 103 ◽  
Author(s):  
Bin Wang ◽  
Weizeng Huang ◽  
Shansuo Zheng

In order to study the restoring force characteristics of corroded steel frame beams in an acidic atmosphere, based on different corrosion damage degrees, tests on the material properties of 48 steel samples and six steel frame beam specimens with a scale ratio of 1/2 under low cyclic repeated loading were conducted. According to the test results, the relationship between the weight loss rate and the mechanical properties of corrosion damage steel was obtained by numerical regression analysis, and the hysteresis curves and skeleton curves of the corroded steel frame beams were also obtained. The simplified trilinear skeleton curve model of the corroded steel frame beams and the expression of the corresponding feature points were determined by analyzing the failure process. The strength and stiffness degradation rule of the steel frame beam was analyzed furtherly. The hysteresis rule was established by introducing the cyclic degradation index which considers the effect of different corrosion degrees, and finally the restoring force model based on the corroded steel frame beams in an acidic atmospheric environment was established. Comparison with the test results show that the skeleton curve and the restoring force model established in this paper can accurately describe the seismic performance of corrosion damaged steel frame beams and can provide a basis for the seismic calculation analysis of corroded steel structures in an acidic atmosphere.


Sign in / Sign up

Export Citation Format

Share Document