Study on the Relation between Bore Diameter of the Hollow Screw and Static Stiffness of the Dual-Drive System

2013 ◽  
Vol 401-403 ◽  
pp. 295-299
Author(s):  
Lan Jin ◽  
Bing Yan ◽  
Xiao Hui Zheng ◽  
Yong Wei Wang ◽  
Li Ming Xie

The size of bore diameter of hollow screw, to some extent, will affect the dual-drive feed system's static stiffness, and then affect the machining accuracy of the workpiece. This paper takes the dual-drive feed system as the research object and builds its finite element model. Use the model to make static analysis in Workbench. After that, we can get the relation between bore diameter of hollow screw and static deformation of the dual-drive system. The results demonstrate that: with the bore diameter of hollow screw increases, the maximum static deformation volume of the dual-drive system gradually becomes larger. This article suggests that the appropriate design size of the diameter should be 4~10 mm. Because the corresponding static deformation of the dual-drive system changes little in magnitude within this range. These advised parameters can provide certain principles for the improvements of a hollow screw shape and size and its parametric design.

2013 ◽  
Vol 668 ◽  
pp. 470-474
Author(s):  
Zhen Shan Li ◽  
Yong Gang Li ◽  
Er Jiang Zhang

The finite element model of a novel 5-dof mould repairing hybrid machine tool is modeled by using the ANSYS Parametric Design Language (APDL), and the static stiffness of the whole machine and the sensitivity are analyzed. With the help of APDL and the concept of substructure integration, the fast reconstruction strategy to establish the finite element model is put forward. Then, the implementation strategy aimed to analyze the static stiffness of the whole machine and optimize the hinge structure are proposed. Then through the data statistics and the sensitivity analysis, the influence tendency of key flexible components affecting the static stiffness of the system are identified, which provides the guidance for parameter design of this prototype machine.


2014 ◽  
Vol 543-547 ◽  
pp. 76-79
Author(s):  
Ting Ting Guo ◽  
Teng Jiao Sun ◽  
Fang Shao

Taking a grinding machine tool as an example, this paper obtained the static stiffness of the machine tool by finite element analysis method. The structure and technical parameters of the machine tool were introduced at first.Then, the finite element model of the machine tool was established. The static stiffness of the machine tool in x-, y-, and z-directions were simulated at last. The results show that, the static stiffness in x-direction is 2.0062×107 N/m, the static stiffness in y-direction is 0.821×107 N/m, and the static stiffness in z-direction is 0.2992×107 N/m. This paper provides advices for structure optimization of the machine tool which is convenient for improving the machining accuracy.


2014 ◽  
Vol 548-549 ◽  
pp. 383-388
Author(s):  
Zhi Wei Chen ◽  
Zhe Cui ◽  
Yi Jin Fu ◽  
Wen Ping Cui ◽  
Li Juan Dong ◽  
...  

Parametric finite element model for a commonly used telescopic boom structure of a certain type of truck-mounted crane has been established. Static analysis of the conventional design configuration was performed first. And then an optimization process has been carried out to minimize the total weight of the telescopic structures. The design variables include the geometric shape parameters of the cross-sections and the integrated structural parameters of the telescopic boom. The constraints include the maximum allowable equivalent stresses and the flexure displacements at the tip of the assembled boom structure in both the vertical direction and the circumferential direction of the rotating plane. Compared with the conventional design, the optimization design has achieved a significant weight reduction of up to 24.3%.


Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

Conical picks are the key cutting components used on roadheaders, and they are replaced frequently because of the bad working conditions. Picks did not meet the fatigue life when they were damaged by abrasion, so the pick fatigue life and strength are excessive. In the paper, in order to reduce the abrasion and save the materials, structure optimization was carried out. For static analysis and fatigue life prediction, the simulation program was proposed based on mathematical models to obtain the cutting resistance. Furthermore, the finite element models for static analysis and fatigue life analysis were proposed. The results indicated that fatigue life damage and strength failure of the cutting pick would never happen. Subsequently, the initial optimization model and the finite element model of picks were developed. According to the optimized results, a new type of pick was developed based on the working and installing conditions of the traditional pick. Finally, the previous analysis methods used for traditional methods were carried out again for the new type picks. The results show that new type of pick can satisfy the strength and fatigue life requirements.


2015 ◽  
Vol 799-800 ◽  
pp. 576-580 ◽  
Author(s):  
Yi Guang Shi ◽  
Hui Xiao ◽  
Jun Ao Zhang ◽  
Da Wei Zhang

This paper presents relationships between some vital parameters and the natural frequency of the ball screw feed drive system. A finite element model (FEM) of a machine tool feed drive system is established with joint parameters added in based on the SAMCEF software. Using the finite element model, the influences of the material properties of the worktable, the diameter of the ball screw and joint parameters on the natural frequency of axial vibration are derived. These results provide a reliable basis for the optimization design of the ball screw feed drive system.


2014 ◽  
Vol 889-890 ◽  
pp. 3-8 ◽  
Author(s):  
Xiao Chun Shi ◽  
Wei Dong He ◽  
Jun Hua Bao

In order to improve the bearing capacity and service life of the locomotive traction gears, modern design methods are used to optimize the gear tooth curves and their parameters. The simulation of the involute tooth curves and tooth root transition curves of the traction gears are build by Ansys Parametric Design Language (APDL). It can accurately describe the finite element model with complex geometries. It laid a solid foundation for the tooth strength analysis and modification.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xingjian Dong ◽  
Zhike Peng ◽  
Wenming Zhang ◽  
HongXing Hua ◽  
Guang Meng

To control vibration of a piezoelectric smart structure, a controller is usually designed based on a reduced order model (ROM) of the system. When such a ROM based controller operates in closed loop with the actual structure, spillover phenomenon occurs because the unmodeled dynamics, which are not included in ROM, will be excited. In this paper, a new approach aiming at investigating spillover effects in ANSYS software is presented. By using the ANSYS parametric design language (APDL), the ROM based controller is integrated into finite element model to provide an accurate representation of what will happen when the controller is connected to the real plant. Therefore, the issues of spillover effects can be addressed in the closed loop simulation. Numerical examples are presented for investigating spillover effects of a cantilever piezoelectric plate subjected to various types of loading. The importance of considering spillover effects in closed loop simulation of piezoelectric smart structures is demonstrated. Moreover, the present study may provide an efficient method especially beneficial for preliminary design of piezoelectric smart structure to evaluate the performance of candidate control laws in finite element environment considering spillover effects.


Sign in / Sign up

Export Citation Format

Share Document