Experimental Research on Ductility and Bearing Capacity of Prestressed High Strength Concrete Pipe Piles

2013 ◽  
Vol 405-408 ◽  
pp. 2511-2514
Author(s):  
Xian Rong ◽  
Jian Xin Zhang ◽  
Yan Yan Li ◽  
Yan Feng Chen

Based on the low cyclic loading experiments on prestressed high strength concrete pipe piles, in which one of them was reinforced by steel fiber, another stirrup ratio, the other was not reinforced, the authors compare the results in terms of damage characteristic, hysteretic curve, bearing capacity, displacement and ductility. It is shown that the bearing capacity and ductility of prestressed high strength concrete pipe piles reinforced by steel fiber increases. With the increase of stirrup ratio, the hysteretic behavior and the deformation behavior of prestressed high strength concrete pipe piles improves.

2020 ◽  
Vol 980 ◽  
pp. 282-290
Author(s):  
Shi Meng Wang ◽  
Xin Sheng Yin

Prestressed concrete pipe pile with high bearing capacity, the advantages of convenient construction, low cost and widely used in practical engineering, because of the prestressed high strength concrete in use process is in complex stress state, both are under a lot of vertical load, and horizontal seismic action needs to be considered at the same time, it is necessary under the condition of considering the vertical load bearing capacity of prestressed high strength concrete level and considering the loading level, the horizontal bearing capacity. Scholars at home and abroad based on the simple hypothesis, puts forward the calculation method of a lot of interaction with soil, in the future will be adopted in calculation, using ABAQUS finite element analysis, this paper established the three-dimensional finite element model of prestressed concrete pipe pile, respectively under different vertical pressure (P = 4000 kn, P = 4800 kn, P = 6000 kn) one-way load and calculated the horizontal bearing capacity, and under repeated load, respectively to study the size of the different vertical pressure and different reinforcement stirrup ratio on its bearing capacity and seismic performance. The results show that the stiffness of pipe pile decreases significantly with the increase of vertical pressure under different vertical loads. With the increase of vertical load, the ductility and energy dissipation capacity of the components decrease gradually. The horizontal bearing capacity of prestressed high strength concrete pipe decreases with the increase of vertical pressure. However, its amplitude decreases with the increase of vertical pressure value.


2010 ◽  
Vol 163-167 ◽  
pp. 1586-1591
Author(s):  
Jie Lei ◽  
Dan Ying Gao ◽  
Hua Fan

Based on the experiments of 10 model specimens of fiber reinforced high strength concrete three-pile caps with the dimension of 831mm×831mm×831mm, the mechanical behavior and the important factors on the cracking load and ultimate bearing capacity of fiber reinforced high strength concrete three-pile caps were researched. The study indicates that with increasing of concrete strength, the volume fraction of steel fiber, the effective thickness and reinforcement ratio of pile cap, the bearing capacity of three-pile caps improves largely. At the same time the type of steel fiber and steel ratio have remarkable effects on the bearing capacity. The results are valuable for establishing bearing capacity calculation formulas of fiber reinforced high strength concrete three-pile caps and improving “the Technical Specification for fiber Reinforced Concrete Structure.”


2012 ◽  
Vol 166-169 ◽  
pp. 1450-1453
Author(s):  
Yan Yan Li ◽  
Jin Li Qiao ◽  
Jian Xin Zhang

In order to research the effect of stirrup ratio on ductility and bearing capacity of T-shaped columns with HRB500 reinforcement, three T-shaped columns with HRB500 reinforcement were tested under low cyclic loading. The damage characteristic, hysteretic curve, yield load, ultimate load, displacement ductility and curvature ductility were analyzed. It is shown that the T-shaped column with HRB500 reinforcement have excellent ductility, higher bearing capacity and better deformation behavior, which can meet the requirement of anti-seismic design. With the increase of stirrup ratio, the curvature ductility of T-shaped columns with HRB500 reinforcement increases and the hysteretic behavior improves.


2015 ◽  
Vol 744-746 ◽  
pp. 100-104
Author(s):  
Yi Fan Li ◽  
Ping Liu ◽  
Jian Xin Zhang

Four prestressed high strength concrete pipe piles were tested under low cyclic loading, the failure characteristic, bearing capacity, ductility performance and hysteretic characteristic were analyzed. The research show that the bearing capacity and the ductility performance could be improved a lot by two measures of adding non-prestressed reinforcement and filling the pile core. The hysteresis loop of pile specimen adding non-prestressed steel bars is fuller, the energy dissipation capacity is larger, and the hysteretic behavior is better.


2021 ◽  
pp. 136943322110115
Author(s):  
Jianwei Zhang ◽  
Deli Zhang ◽  
Xiangyu Li ◽  
Zhaoxv Shen

To study the cyclic behavior of partially precast steel fiber high-strength concrete columns with high-strength steel bars, four full-sized square column specimens were fabricated and tested under constant axial load and horizontal cyclic load. The effects of the strength of precast concrete shell and the diameter of cast-in-place column core were analyzed in detail. The results show that partially precast steel fiber high-strength concrete columns have good seismic performance and deformation ability. Compared to the concrete column with lower strength of precast concrete shell, the concrete column with higher strength of precast concrete shell showed higher bearing capacity and energy dissipation capacity while lower ductility. Moreover, with the increase of the diameter of cast-in-place column core, the bearing capacity and the deformation ability of the specimen decreased. Finally, based on the experimental research and theoretical analysis, a calculation model for predicting the maximum bearing capacity was proposed, and the results obtained from the formulas were in good agreement with those from the experiments.


Sign in / Sign up

Export Citation Format

Share Document