Effect of Ce0.8Sm0.2O1.9 Interlayer on the Electrochemical Performance of LaBaCo2O5+δ Cathode for IT-SOFCs

2013 ◽  
Vol 423-426 ◽  
pp. 532-536
Author(s):  
Rui Feng Li ◽  
Shou Cheng He ◽  
Lu Cun Guo

The Ce0.8Sm0.2O1.9(SDC) interlayer was prepared by screen-printing method between LaBaCo2O5+δ(LBCO) cathode and 8YSZ electrolyte for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The effect of SDC interlayer on the electrochemical performance of LBCO cathode was investigated. Experimental results showed that the LBCO cathode with SDC interlayer showed much lower area-specific resistance (ASR) and polarization overpotential than that of LBCO cathode without SDC interlayer at the same test condition, exhibiting the better electrochemical performance. For LBCO cathode with SDC interlayer, the ASR was 0.457 Ωcm2at 800 °C in air, about 36.2 % lower than that of the LBCO cathode without SDC interlayer, and the cathodic overpotential was reduced by 38.0 % at a current density of 0.02 Acm-2at 700 °C in air. The application of a thin-layer SDC interlayer between cathode and dense 8YSZ electrolyte showed great potential in improving the cathode performance for IT-SOFCs.

2014 ◽  
Vol 1082 ◽  
pp. 69-72
Author(s):  
Shou Cheng He ◽  
Han Chen ◽  
Lu Cun Guo

Inserting a porous samaria-doped ceria (SDC) interlayer between yttria-stabilized zirconia (YSZ) electrolyte and anode is an effective method to enhancing the performance of intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this work, the microstructure and morphology of the SDC interlayer were optimized by varying its thickness and sintering temperature. Results show that the SDC interlayer fabricated by utilizing once screen printing method and then sintered at 1300 °C for 2 h obtains the best electrochemical performance. The resulting polarization resistance and anodic overpotential (at a current density of 0.05 Acm-2) were 0.84 Ωcm2 and 0.07 V at 800 °C in H2, reduced by factors of 4.7 and 5.6, respectively, when compared with the LSCM anode without the SDC interlayer.


2022 ◽  
Vol 334 ◽  
pp. 04009
Author(s):  
Giovanni d’Andrea ◽  
Enrico Squizzato ◽  
Antonella Glisenti

Electrochemically active oxide-based anodes capable of working in Single-Chamber Solid Oxide Fuel Cells (SC-SOFCs) were developed. Their performance is related to the selectivity of the electrodes. Tests are carried out on lab-scale devices with YSZ pellets as solid electrolytes in electrolyte supported cells. Selecting methane as a fuel, a gas mixture in the ratio CH4/O2 = 2 was chosen. The Ni-YSZ (NiO:YSZ=60:40) anode was optimized through CeO2 nanocatalysts infiltration to enhance the anode catalytic activity and make its reduction easier. Several infiltration amounts were compared, from null to 15% of the electrode weight. Both symmetric and complete cells (with LSCF-based cathodes) were tested in H2 and CH4/O2. For increasing amounts of infiltrated CeO2, symmetric cells tests describe an area specific resistance (ASR) reduction from 40 Ω cm2 to 1.7 Ω cm2 in hydrogen and from 11 Ω cm2 to 3.9 Ω cm2 in the methane/oxygen mixture. While complete cells tests displayed an ASR drop from 30 Ω cm2 to 2.9 Ω cm2 in H2, and from 8.7 Ω cm2 to 4.3 Ω cm2 in the methane/oxygen mixture, while OCP and power grew from 478 mV and 3.7 mW cm-2 to 766 mV and 13 mW cm-2.


Author(s):  
Jung Hyun Kim ◽  
Seung-Wook Baek ◽  
Joongmyeon Bae

This study focuses on cathode performances of (Ln1−xSrx)CoO3−δ (Ln=Pr, Nd, Sm, and Gd, x=0, 0.3, 0.5, 0.7, and 1) for intermediate temperature-operating solid oxide fuel cells (IT-SOFCs, 600–800°C). (Ln1−xSrx)CoO3−δ powders as cathode materials for IT-SOFC, which can be operated between 600°C and 800°C were synthesized by the glycine-nitrate-process (GNP) method. The impedance spectroscopy method was used to investigate area specific resistance (ASR) and electrochemical properties of (Ln1−xSrx)CoO3−δ (Ln=Pr, Nd, Sm, and Gd, x=0, 0.3, 0.5, 0.7, and 1). Pr0.5Sr0.5CoO3−δ and Pr0.3Sr0.7CoO3−δ showed to 0.15 Ω cm2 of ASR at 700°C and Nd0.5Sr0.5CoO3−δ to 0.14 Ω cm2 at 700°C. Sm0.5Sr0.5CoO3−δ showed the lowest ASR values of 0.10 Ω cm2 on 10% Gd-doped cerium oxide at 700°C.


2016 ◽  
Vol 61 (2) ◽  
pp. 629-634 ◽  
Author(s):  
Yeong-Ju Choe ◽  
Kyoung-Jin Lee ◽  
Hae-Jin Hwang

Abstract In this study, Nd2Ni1-xCuxO4+δ (x=0, 0.05, 0.1, and 0.2) layered perovskite powders were synthesized by the glycine nitrate process (GNP) and the chromium poisoning effect on the electrochemical performance of the Nd2Ni0.95Cu0.05O4+δ and La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes were investigated. In the case of the LSCF cathode, the strontium chromite phase formed after the exposure of the gaseous chromium species, while there was no additional phase in the Nd2Ni0.95Cu0.05O4+δ cathode. The area specific resistance (ASR) of the Nd2Ni0.95Cu0.05O4+δ cathode did not change significantly after the exposure of the gaseous chromium species at 800°C.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6562
Author(s):  
Tobias Marquardt ◽  
Jan Hollmann ◽  
Thomas Gimpel ◽  
Wolfgang Schade ◽  
Stephan Kabelac

Electrolyte-supported solid oxide cells are often used for steam electrolysis. Advantages are high mechanical stability and a low degradation rate. The aim of this proof of concept study was to use a femtosecond laser to process the electrolyte of an electrolyte-supported solid oxide cell and evaluate the effect of this laser treatment on the electrochemical performance. The femtosecond laser treatment induces a macroscopic and a superimposed microscopic structure. It can be proven that the electrolyte remains gas tight and the electrochemical performance increases independently of the laser parameters. The initial area-specific resistance degradation during a constant current measurement of 200 h was reduced from 7.9% for a non-treated reference cell to 3.2% for one of the laser-treated cells. Based on electrochemical impedance measurements, it was found that the high frequency resistance of the laser-treated cells was reduced by up to 20% with respect to the reference cell. The impedance spectra were evaluated by calculating the distribution of relaxation times, and in advance, a novel approach was used to approximate the gas concentration resistance, which was related to the test setup and not to the cell. It was found that the low frequency polarization resistance was increased for the laser-treated cells. In total, the area-specific resistance of the laser-treated cells was reduced by up to 14%.


Sign in / Sign up

Export Citation Format

Share Document