Flow Field and Static Pressure Analysis of Adsorption Principle of Wall-Climbing Robot

2013 ◽  
Vol 427-429 ◽  
pp. 65-68
Author(s):  
Yi Tong Ma ◽  
Fang Xing Li ◽  
Xue Shan Gao ◽  
Wei Jie Bo

The impeller is key element that brings about negative pressure adsorption. The efficiency of the impeller will determine the adsorption capacity of robot. In this paper, physical model is built based on the theory of fluid dynamics by taking a common high speed rotation of impeller as a research object. The basic parameters and boundary conditions are set and a 3D fluid dynamic simulation is done based on FloEFD. The factors such as blade curve, rotational speed and air inlet velocity which have effect on surface flow field impeller are investigated. Then the results are shown by figures and the study analysis is carried on.

2009 ◽  
Vol 419-420 ◽  
pp. 505-508 ◽  
Author(s):  
Lan Yu Yang ◽  
Yan Ma

Both dynamic cutters installed on the shaft and fixed cutters installed on the shell has realized to form the high-pressured superimposition produced the high dynamic pressure and the static pressure due to the Reynolds effect during process of high-speed rotation, which forms high pressure required by super velocity centrifugal grinding, and raw material of the sawdust or fibrous fragments can be stricken and cut into the wood powders which are in line with granularity of requirement for power generation through treble percussion effect including percussion between the particles and the dynamic and fixed cutters, percussion between particles and particles, and percussion between the particles and the shell. Simultaneously, the disintegrator has realized integration between the main motor and the main spindle, which has many characteristics such as contact construction, low noise and slight vibration. This machine is possible to realize 3 kind of granularity that could be selected.


1978 ◽  
Vol 21 (158) ◽  
pp. 1306-1310 ◽  
Author(s):  
Akio NAGAMATSU ◽  
Masaho FUKUDA

Author(s):  
Luca Bertocchi ◽  
Matteo Giacopini ◽  
Daniele Dini

In the present paper, the algorithm proposed by Giacopini et. al. [1], based on a mass-conserving formulation of the Reynolds equation using the concept of complementarity is suitably extended to include the effects of compressibility, piezoviscosity and shear-thinning on the lubricant properties. This improved algorithm is employed to analyse the performance of the lubricated small end and big end bearings of a connecting rod of a high performance motorbike engine. The application of the algorithm proposed to both the small end and the big end of a con-rod is challenging because of the different causes that sustain the hydrodynamic lubrication in the two cases. In the con-rod big end, the fluid film is mainly generated by the relative high speed rotation between the rod and the crankshaft. The relative speed between the two races forms a wedge of fluid that assures appropriate lubrication and avoids undesired direct contacts. On the contrary, at the con-rod small end the relative rotational speed is low and a complete rotation between the mating surfaces does not occurs since the con-rod only oscillates around its vertical axis. Thus, at every revolution of the crankshaft, there are two different moments in which the relative rotational speed between the con-rod and the piston pin is null. Therefore, the dominant effect in the lubrication is the squeeze caused by the high loads transmitted through the piston pin. In particular both combustion forces and inertial forces contribute to the squeeze effect. This work shows how the formulation developed by the authors is capable of predicting the performance of journal bearings in the unsteady regime, where cavitation and reformation occur several times. Moreover, the effects of the pressure and the shear rate on the density and on the viscosity of the lubricant are taken into account.


2012 ◽  
Vol 542-543 ◽  
pp. 828-832 ◽  
Author(s):  
Jing Fang Yang ◽  
Xian Ying Feng ◽  
Hong Jun Fu ◽  
Lian Fang Zhao

Tire dynamic balance detection plays an important part in tire quality detection area. This paper uses the two-sided balance method to obtain the unbalance of the tire. According to the engineering practice, builds kinetic model and then introduces the calculating principle and operating procedures. In order to accurately determine the influence coefficient, a calibration method without tire is put forward. Further more, this new method is able to eliminate the unbalance caused by non-quality factors to some extent. But this method is presented based on the relative position invariance of the upper rim and lower rim, even both of them are under high-speed rotation situation. Finally, the experimental data acquired from both of the two methods are compared. The calibration method without tire is proved to be more feasible, efficient and accurate.


2003 ◽  
Vol 439 ◽  
pp. 156-162
Author(s):  
A. Da Camara ◽  
Joaquín Lira-Olivares ◽  
Soo Wohn Lee ◽  
H.D. Park ◽  
Y.S. Park

2021 ◽  
Author(s):  
Ryosuke Seki ◽  
Satoshi Yamashita ◽  
Ryosuke Mito

Abstract The aerodynamic effects of a probe for stage performance evaluation in a high-speed axial compressor are investigated. Regarding the probe measurement accuracy and its aerodynamic effects, the upstream/downstream effects on the probe and probe insertion effects are studied by using an unsteady computational fluid dynamics (CFD) analysis and by verifying in two types of multistage high-speed axial compressor measurements. The probe traverse measurements were conducted at the stator inlet and outlet in each case to evaluate blade row performance quantitatively and its flow field. In the past study, the simple approximation method was carried out which considered only the interference of the probe effect based on the reduction of the mass flow by the probe blockage for the compressor performance, but it did not agree well with the measured results. In order to correctly and quantitatively grasp the mechanism of the flow field when the probe is inserted, the unsteady calculation including the probe geometry was carried out in the present study. Unsteady calculation was performed with a probe inserted completely between the rotor and stator of a 4-stage axial compressor. Since the probe blockage and potential flow field, which mean the pressure change region induced by the probe, change the operating point of the upstream rotor and increase the work of the rotor. Compared the measurement result with probe to a kiel probe setting in the stator leading edge, the total pressure was increased about 2,000Pa at the probe tip. In addition, the developed wake by the probe interferes with the downstream stator row and locally changes the static pressure at the stator exit. To evaluate the probe insertion effect, unsteady calculations with probe at three different immersion heights at the stator downstream in an 8-stage axial compressor are performed. The static pressure value of the probe tip was increased about 3,000Pa in the hub region compared to tip region, this increase corresponds to the measurement trend. On the other hand, the measured wall static pressure showed that there is no drastic change in the radial direction. In addition, when the probe is inserted from the tip to hub region in the measurement, the blockage induced by the probe was increased. As a result, operating point of the stator was locally changed, and the rise of static pressure of the stator increased when the stator incidence changed. These typical results show that unsteady simulations including probe geometry can accurately evaluate the aerodynamic effects of probes in the high-speed axial compressor. Therefore, since the probe will pinpointed and strong affects the practically local flow field in all rotor upstream passage and stator downstream, as for the probe measurement, it is important to pay attention to design the probe diameter, the distance from the blade row, and its relative position to the downstream stator. From the above investigations, a newly simple approximation method which includes the effect of the pressure change evaluation by the probe is proposed, and it is verified in the 4-stage compressor case as an example. In this method, the effects of the distance between the rotor trailing edge (T.E.) and the probe are considered by the theory of the incompressible two-dimensional potential flow. The probe blockage decreases the mass flow rate and changes the operating point of the compressor. The verification results conducted in real compressor indicate that the correct blockage approximation enables designer to estimate aerodynamic effects of the probe correctly.


1995 ◽  
Vol 251 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Kazumasa Muramoto ◽  
Ikuro Kawagishi ◽  
Seishi Kudo ◽  
Yukio Magariyama ◽  
Yasuo Imae ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document