Excitation Control Based on Objective Holographic Feedbacks and Extended State Observer

2013 ◽  
Vol 448-453 ◽  
pp. 2540-2544
Author(s):  
Xian Rong Chang ◽  
Hai Sheng Zhang ◽  
Hui Yun Wang

In order to improve the control effect of the generator excitation controller, this paper proposes an excitation control based on objective holographic feedbacks and extended state observer. First, nonlinear factors of the nonlinear equation is switched to the state equation which contains the control input factors by objective holographic feedbacks. Then, constructing a second extended state observer tracks and compensates uncertain disturbance, simultaneously reduces system parameters of control law. Finally, MATLAB is used for simulation, the results show that nonlinear excitation controller that this paper designs can not only improve static and transient stability of system, but also improve the precision and stability of the terminal voltage control better.

Author(s):  
Kejie Gong ◽  
Ying Liao ◽  
Yafei Mei

This article proposed an extended state observer (ESO)–based output feedback control scheme for rigid spacecraft pose tracking without velocity feedback, which accounts for inertial uncertainties, external disturbances, and control input constraints. In this research, the 6-DOF tracking error dynamics is described by the exponential coordinates on SE(3). A novel continuous finite-time ESO is proposed to estimate the velocity information and the compound disturbance, and the estimations are utilized in the control law design. The ESO ensures a finite-time uniform ultimately bounded stability of the observation states, which is proved utilizing the homogeneity method. A non-singular finite-time terminal sliding mode controller based on super-twisting technology is proposed, which would drive spacecraft tracking the desired states. The other two observer-based controllers are also proposed for comparison. The superiorities of the proposed control scheme are demonstrated by theory analyses and numerical simulations.


2012 ◽  
Vol 588-589 ◽  
pp. 1507-1511
Author(s):  
Xiao Juan Sun

This paper presents a nonlinear excitation controller for transient stability combined differential geometry theory with PID technology. The controller ties the output of linear multi-variable excitation controller with the output of PID. Exact feedback linearization theory of differential geometry is applied to the design of linear multi-variable excitation controller for the single machine infinite system. Simulation results show that, compared with the general differential geometric controller, the proposed controller has the better control effect on power system and which remarkably improves the terminal voltage deficiencies in the control of generator.


2018 ◽  
Vol 36 (3) ◽  
pp. 921-947 ◽  
Author(s):  
Chen Chen ◽  
Guangfu Ma ◽  
Yueyong Lyu ◽  
Yanning Guo

Abstract This paper investigates the attitude-tracking control problem of hypersonic reentry vehicle in cases of multiple uncertainties, external disturbances and input constraints. The controller design is based on synthesizing the extended state observer (ESO) into a back-stepping control technique. This control-oriented model is formulated with mismatched and matched uncertainties. They reflect the total disturbances that group different types of aerodynamic uncertainties and external moment disturbances. In order to improve the system robustness, a sigmoid function-based ESO is first proposed. This will estimate the total disturbance and is equipped with a controller. The sigmoid smooth function is also introduced for the purpose of handling the input constraints. This will approximate saturation and guarantee that the control input is bounded. Error states between the actual control input and the desired control input are integrated to compensate for the saturation effect. Following this, the stability of the closed-loop system is proved within the Lyapunov theory framework. Several simulations are then investigated to illustrate the effectiveness of the proposed constrained attitude control scheme.


2012 ◽  
Vol 182-183 ◽  
pp. 1241-1244
Author(s):  
Xiao Juan Sun ◽  
Quan Min Guo

This paper presents a new nonlinear excitation controller for transient stability with voltage feedback of a synchronous power generator connected to a single machine infinite bus. In this design terminal voltage is introduced as a feedback. The proposed controller based on voltage feedback technique which enhance the transient stability of power system and stabilizes the terminal voltage about the given operating point when the fault occurs closer to the infinite bus bar. Simulation results show that, compared with the controller without voltage feedback, the proposed controller has better control effect on power system and which remarkably improves the deficiencies in the control of generator terminal voltage of the traditional control.


Author(s):  
Liang Wang ◽  
Ke Peng ◽  
Weihua Zhang ◽  
Donghui Wang

This paper focuses on the integrated guidance and autopilot design with control input saturation in the end-game phase of hypersonic flight. Firstly, uncertain nonlinear integrated guidance and autopilot model is developed with third actuator dynamics, where the control surface deflection has magnitude constraint. Secondly, neural network is implemented in extended state observer (ESO) design, which is used to estimate the complex model uncertainty, nonlinearity and state coupling. Thirdly, a command filtered back-stepping controller is designed with hybrid sliding surfaces to improve the terminal performance. In the process, different command filters are implemented to avoid the influences of disturbances and repetitive derivation, meanwhile solve the problem of unknown control direction caused by saturation. The stability of closed-loop system is proved by Lyapunov theory, and the principles abided by the controller parameters are concluded through the proof. Finally, series of 6-DOF numerical simulations are presented to show the feasibility and validity of the proposed controller.


2021 ◽  
pp. 002029402110286
Author(s):  
Pu Yang ◽  
Peng Liu ◽  
ChenWan Wen ◽  
Huilin Geng

This paper focuses on fast terminal sliding mode fault-tolerant control for a class of n-order nonlinear systems. Firstly, when the actuator fault occurs, the extended state observer (ESO) is used to estimate the lumped uncertainty and its derivative of the system, so that the fault boundary is not needed to know. The convergence of ESO is proved theoretically. Secondly, a new type of fast terminal sliding surface is designed to achieve global fast convergence, non-singular control law and chattering reduction, and the Lyapunov stability criterion is used to prove that the system states converge to the origin of the sliding mode surface in finite time, which ensures the stability of the closed-loop system. Finally, the effectiveness and superiority of the proposed algorithm are verified by two simulation experiments of different order systems.


Sign in / Sign up

Export Citation Format

Share Document