Comparative Study on the Wear Behavior of FPM and NBR in the Natural Crude Oil Medium

2013 ◽  
Vol 456 ◽  
pp. 349-353
Author(s):  
Zhe Wang ◽  
Shi Jie Wang

The wear behavior of stator rubber in the natural medium of crude oil in oil-drilling screw pumps directly matters to its service life and sealing property. The premature failure of stator rubber is the main cause for the shortening life of screw pumps. In order to study the wear mechanism of NBR and FPM, a friction wear test was conducted at room temperature by using a MPV-600 micro-computer-controlling grain-abrasion testing machine, in which NBR, FPM and 45# steal pair are the testing subjects. SEM was afterwards employed to observe the surface topography before and after the rubber wear. The test result shows that at the constant low load, the wear extent of FPM increases in a stable, linear way when the rotor rotating speed increases, and the wear extent of NBR increases with the increasing speed of the rotor rotating speed. However, when the rotating speed is over 400r/min, the wear extent of NBR decreases instead. This might be attributed to the improvement of the local lubrication state on the friction surface. Much consistence is indicated in the changing rule of the friction coefficient of the two types of rubber and the changing wear extent with the rotating speed. At the constant, low rotating speed, the wear extent of NBR and FPM basically increases linearly, while the friction coefficient of NBR, FPM and steel pair decreases with the increasing load.

2011 ◽  
Vol 413 ◽  
pp. 308-313
Author(s):  
Zhe Wang ◽  
Shi Jie Wang

NBR is the essential material selected for the stator of progressing cavity pump which is used for oil extraction. The premature failure of NBR is the primary cause for shortening working life of the pump. Wear behavior of NBR and its mechanism by 45 steel were studied in crude oil medium using a MPV-600-type compute-controlled abrasive wear test machine. Through the friction test found at constant low load, and at constant temperature, the friction coefficient is along with the rotational speed increased first and then decreased and then increased; At constant low speed, and at constant temperature, friction coefficient decreases as the force increases; The friction coefficient increases with rising temperature first and then drops; The main wear mechanism of the rubber in crude oil is wet abrasive wear. The test results on the rational selection of working parameters to improve rubber metal friction pair of whole life have practical significance.


2021 ◽  
Vol 23 (06) ◽  
pp. 729-741
Author(s):  
Kamalakannan R ◽  
◽  
Somasundram A ◽  

Chromium (Cr), Copper (Cu), Cobalt (Co), Ferrous (Fe) and Nickel (Ni), the HighEntropy Alloys were mixed to form analloy. A die was created using OHNS (OilHardenedNickelSteel).Thealloyed powderwasloadedintothedieandaloadof13KNwas applied. Universal Testing Machine (UTM) was used for the load application. Afterpressing, the specimen was kept inside the Muffle Furnace for heating at 600°C for sintering. After heating, the surface of the specimen was smoothened byroughing. The weight of the specimen was noted, before and after the wear test.The specimen was subjected to wear test in Pin on Disc Machine. Wear rate of thespecimen was calculated. This specimen was used to coat the Single Point Cuttingtool. This coating of tool was done to decrease the wear rate and increase the lifeofthe tool.


2011 ◽  
Vol 230-232 ◽  
pp. 1079-1083
Author(s):  
Yi Zhang ◽  
Shi Jie Wang ◽  
Zhong Feng Guo ◽  
Zhong Wei Ren

Select two types of nitrile-butadiene rubber (NBR) which they are different in ingredients, under two types of crude oil medium respectively, the test is carried out on the friction testing machine. The test result shows that under the constant intermediate-low rotate speed and constant temperature, the friction coefficient decreases as the load increases; under the constant intermediate-low load and constant temperature, the friction coefficient increases as the rotate speed increases.


2013 ◽  
Vol 300-301 ◽  
pp. 833-836
Author(s):  
Shi Jie Wang ◽  
Hao Lin ◽  
Xiao Ren Lv

The progressing cavity pump (PCP) always works in the waxy oil well. Therefore the research on the influence of various liquid paraffin contents in crude oil on the friction and wear behaviors of the progressing cavity pump`s stator is very important for choosing the best stator rubber and developing the service life of PCP. Wear behavior of nitrile butadiene rubber (NBR) and fluororubber (FKM) was investigated at room temperature using a reciprocating friction and wear testing machine under the various paraffin contents in crude oil (0%、10%、30%、50%、100%). The wear morphology of blend was analyzed through the stereomicroscope and the wear behavior of two blends was also discussed and compared. The results show that the wear resistance of FKM is better than that of NBR under the same paraffin content in crude oil; With the increase of the paraffin content, the wear and coefficient of friction also increase. When the paraffin content in crude oil is less than 30%, the wear loss of NBR and FKM are basically the same; When the paraffin content in crude oil is more than 30%, the wear loss of NBR is far more than that of FKM.


2021 ◽  
Vol 1016 ◽  
pp. 1235-1239
Author(s):  
Eleonora Santecchia ◽  
Marcello Cabibbo ◽  
Abdel Magid S. Hamouda ◽  
Farayi Musharavati ◽  
Anton Popelka ◽  
...  

The properties of anodized aluminum, and wear resistance in particular, are of high interest for the scientific community. In this study, discs of AA6082 were subjected to a peculiar hard anodizing process leading to anodized samples having different thicknesses. In order to investigate the wear mechanism of samples, unidirectional tribological tests were performed against alumina balls (corundum) under different loading conditions. Surface and microstructure of all the samples were characterized before and after the tribological tests, using different characterization techniques. The tribological tests showed remarkable differences in the friction coefficient and wear behavior of the anodized AA6082 samples, related to the microstructure modifications and to the specific applied sliding conditions.


Author(s):  
Dongbo Wei ◽  
Fengkun Li ◽  
Xiangfei Wei ◽  
Tomasz Liskiewicz ◽  
Krzysztof J Kubiak ◽  
...  

In this study, surface Cr-Nb alloying was realized on γ-TiAl using double glow plasma hollow cathode discharge technique. An inter-diffusion layer was generated under the surface, composed of Cr2Nb intermetallic compounds. After Cr-Nb alloying, the surface nanohardness of γ-TiAl increased from 5.65 to 11.61 GPa. The surface H/E and H3/E2 increased from 3.37 to 5.98 and from 0.64 to 4.15, respectively. Cr-Nb alloying and its effect on fretting wear were investigated. The surface treatment resulted in improved plastic deformation and fretting wear resistance of γ-TiAl. The fretting wear test showed that an average friction coefficient of γ-TiAl against Si3N4 ball was significantly decreased after Cr-Nb alloying. The fluctuation of friction coefficient during running-in stage was significantly improved. The friction behavior of both γ-TiAl before and after Cr-Nb alloying could be divided into distinctive stages including formation of debris, flaking, formation of crack, and delamination. It was observed that the high hardness, resistance to plastic deformation, and fatigue resistance of γ-TiAl after Cr-Nb alloying could inhibit the formation of debris and delamination during friction test. The fretting wear scar area and the maximum wear scar depth were decreased, indicating that the wear resistance of γ-TiAl has been greatly improved after Cr-Nb alloying. The results indicated that plasma surface Cr-Nb alloying is an effective way for improving the fretting wear resistance of γ-TiAl in aviation area.


2020 ◽  
Vol 1002 ◽  
pp. 151-160 ◽  
Author(s):  
Anmar D. Mahdi ◽  
Saif S. Irhayyim ◽  
Salah F. Abduljabbar

Al7075 hybrid nanocomposites considered one of the most material utilized in modern engineering applications that required a combination of superior properties such as lightweight, high strength, excellent corrosion resistance, and high thermal conductivity. In the current study, Al7075 – 5 vol % graphite self-lubricating composite was reinforced by 0, 1.5, 2.5, 3.5, and 4.5 vol % WO3 nanoparticles in order to study the microstructural, mechanical, and wear characteristics. The classical powder metallurgy route was employed to fabricate the hybrid nanocomposites specimens. The microstructural analysis of the nanocomposites was characterized by utilizing a Field Emission Scanning Electron Microscope (FESEM) and Energy-Dispersive X-ray (EDX) analyses. Mechanical properties such as micro-hardness and diametral compressive strength were studied. Dry sliding wear test was performed under the various loads of 10, 15, 20, and 25 N at a sliding distance and sliding speed of 1810 m and 1.5 m/s, respectively. Results have revealed that the microhardness and diametral compressive strength considerably improved by increasing the WO3 content until 3.5 vol % and then slightly decreased. Besides, both the values of the wear rate and friction coefficient gradually reduced by increment the reinforcement content up to 3.5 vol % and then suddenly increases for all the applied loads. Nevertheless, the wear rate and friction coefficient were correlated positively with the applied loads. From the results obtained, graphite as solid lubricating material with WO3 nanoparticles was successfully combined into the Al7075 alloy matrix. The optimum mechanical and wear performance of the hybrid nanocomposite were revealed at 3.5 vol % content of WO3 nanoparticles.


2012 ◽  
Vol 602-604 ◽  
pp. 1663-1666
Author(s):  
Zhong Qing Tian ◽  
Guo Xing Zhang ◽  
Wei Jiu Huang ◽  
Yu Kai Zhu

The mechanical alloying method process has been innovatively used to prepare Cu-Cr coating on the inner wall of steel pipe. The effect of the rotating speed on thickness, microhardness and friction coefficient of the Cu-Cr coating was investigated. The coating thickness was measured from all samples using optical microscope. The microhardness was analyzed by Digital Microhardness Tester. The friction coefficient was tested by high speed reciprocating friction testing machine. The results show that the coating thickness is 26, 29 and 31μm at the rotating speed of 200, 250 and 300 rpm. The microhardness of the Cu-Cr coating prepared at 200, 250 and 300 rpm are about 760, 780 and 830 Hv. The friction coefficient of the Cu-Cr coating prepared at 200 rpm are about 0.25, 0.40 and 0.38 at the frequencies of 3, 4 and 5 Hz. The friction coefficient of the Cu-Cr coating prepared at 250 rpm are about 0.30, 0.29 and 0.20 at the frequencies of 3, 4 and 5 Hz. The friction coefficient of the Cu-Cr coating prepared at 300 rpm are about 0.10, 0.13 and 0.09 at the frequencies of 3, 4 and 5 Hz.


2010 ◽  
Vol 154-155 ◽  
pp. 1689-1694
Author(s):  
Jin Hua Zheng ◽  
Ying Chen ◽  
Chun Lei Lin ◽  
Xin Li Wei

The semi-circular parallel cracks appeared on the film surface with the angles of 45 degree to the sliding direction of SiC ball and the delamination of film quickly occurred after cracking by using a “ball-on-disk” type testing machine. Stress distribution before and after cracking in the film was calculated by FEM analysis. The maximum tensile stress existing in the film at the back-contact edge of ball is the reason for the initiation of semi-circular parallel cracks. The tensile stress normal to interface as well as the shear stress along interface appears at crack tip, and the alternate generation of these two stresses is the main reason for the delamination. The longitudinal normal stress σxx and the maximum principal stress σ1 become bigger after cracking, so that the crack propagation is faster.


2013 ◽  
Vol 300-301 ◽  
pp. 1254-1258 ◽  
Author(s):  
Xiao Ren Lv ◽  
Xu Yao Huo ◽  
Guang Zu Qu ◽  
Shi Jie Wang

In order to choose the rubber material and improve the service life of Progressing Cavity Pump (PCP ) when exploiting offshore crude oil, it is important to analyze friction and wear behaviour of stator and rotor of PCP in the mixture of crude oil with different water content. The friction and wear test about Nitrile -Butadiene Rubber (NBR) and Fluorine Rubber (FKM) were carried on ring-on-block tester, the wear loss was observed by electron microscope, the wear mechanism was also discussed. The results show that: (1) FKM owns better wearing resistance than NBR in the mixture of crude oil with different water content; (2) when the content of water in the mixture is less than 26%, the frictional coefficient of sample is 0.05, due to the oil film between the friction pairs; (3) when the content of water in the mixture is more than 26%, the frictional coefficient increases to 0.4, because of the water film between the friction pairs.


Sign in / Sign up

Export Citation Format

Share Document