Research on the Performance Influence of Second Adhesive to Friction Materials

2013 ◽  
Vol 461 ◽  
pp. 415-420
Author(s):  
Jie Peng ◽  
Yu Cheng Liu ◽  
Zhi Feng Yan ◽  
Bao Gang Wang ◽  
Fu Dong Lin ◽  
...  

The friction materials have many species and they are being used widely, but people have higher requests to friction materials along with the development of technology. the friction material of this expermental optimization formula have the advantages of suitable and stable friction coefficient under high temperature, low wear rate, good restoration characteristics and so on. It can effcetively reduce heat fade of friction and wear under high temperature barking. fricton and wear performance of friction material with second adhesive is better than common preparation friction material , it has higher friction coefficient and lower wear rate, It was determined by physical chemical properities of tin and sulfer. while heating or wearing, the temperature of friction material reach melting temperature of tin, it will become molten state, and sulfer has strong oxidation, on the one hand, tin and sulfer occurred chemical reaction, generating sulfide, stannous (one sulfide tin),on the other hand, while the sulfer is being molten state, it will absorb some abrasive dust, at the same time of generating sulfide, abrasive dust will be adsorb and solidify to pits of friction surface, forming abrasive dust membrane, let the friction coefficient of sample become stable rapidly, reducing the wear rate of friction material.

2013 ◽  
Vol 668 ◽  
pp. 75-79
Author(s):  
Yang Cao ◽  
Yuan Kang Zhou ◽  
Jian Yu Wei ◽  
Tao Yue Yang ◽  
Hua Wei Nie

The silane coupling agent KH550 is used to modify foamed Fe powder(FFP) surface for obtain the hydrophobic surface, which is the very important component in semi-metallic friction material. It can improve high temperature bonding force between FFP and phenolic resin, further improve friction coefficient stableness of friction material and abrasion resistance. The modification effect of FFP is characterized by IR, and the tribological properties is characterized by XD-MSM constant speed friction test machine, the surface topography is characterized by SEM. The results indicate that FFP has been bonded to silane coupling agent, and formed hydrophobic surface what has the alkyl group. The changing of friction coefficient has reduced 23%, the average wear rate has declined 28.6%,and the wear rate has declined 32% at 350 °C after the friction material with modified FFP compare with the one with original FFP. And those changing are all because of the fact that the FFP modified by KH550 is difficult to peel off during the high temperature.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Weitao Sun ◽  
Wenlong Zhou ◽  
Jianfa Liu ◽  
Xuesong Fu ◽  
Guoqing Chen ◽  
...  

This paper primarily focused on the dynamic tribology properties of one certain nonasbestos organic (NAO) friction material by using an approximate in situ method. This study was performed through a pad-on-disk type friction tester under different temperature conditions. Results showed that temperature has a significant effect on the dynamic tribology performance. At 100 °C, friction coefficient and wear rate after the running-in stage varied little with time. At 250 °C, friction coefficient after the running-in stage increased gradually and then tended to be stable, while wear rate decreased gradually. From 100 to 350 °C, friction coefficient increased first as a function of temperature, but decreased sharply when the temperature was over 250 °C. Simultaneously, wear rate also increased sharply over 250 °C. Additionally, three dynamic evolution models of worn surfaces corresponding to different cases were established.


2013 ◽  
Vol 461 ◽  
pp. 388-396 ◽  
Author(s):  
Yun Hai Ma ◽  
Sheng Sheng Ma ◽  
Sheng Long Shen ◽  
Jin Tong ◽  
Li Guo

Friction material is essential for automotive braking system. Based on previous study of existing friction material problems, hybrid biological fiber-reinforced resin-based friction materials (HBRMs, from the reinforced fiber component of resin-based friction materials) were explored in this study. Bamboo fiber, jute fiber and wool fiber (all have length of 3-5 mm) were processed to make three types of HBRMs and considered as three factors of biological reinforced fiber in test using orthogonal experimental design. Each factor had three levels of 1%, 2% and 3% fiber mass fraction while the ratio of other raw materials remains unchanged. According to the orthogonal experimental design table, nine formulations (denoted as M1-M9) were determined to test the HBRMs. For comparison, non-bio-fiber reinforced friction material (NBM) was added in the test. The properties of the HBRMs tested included Rockwell hardness, impact strength and density. The friction and wear performance of the braking materials was examined by a speed friction tester. The results show that the friction coefficient of the HBRMs was slightly higher than that of the NBM, indicating biological fibers affected the friction coefficient. The friction coefficient of the HBRMs decreased firstly with the increase of temperature and had the lowest value when the temperature reached 300°C, and it increased then as temperature increased. During recovery process, the friction coefficient of the HBRMs firstly increased with the decrease of temperature and then decreased greatly when the temperature dropped to 100°C. The wear rates of the HBRMs increased with the increase of temperature and reached maximum value when temperature reached 200°C, then it decreased with the increase of temperature. The results of fuzzy comprehensive evaluation analysis on the friction coefficient and wear rate show that the best comprehensive properties were presented when the mass fraction of bamboo, jute and wool fiber were 3%, 3% and 1%,respectively.


Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ze Liu ◽  
Eryong Liu ◽  
Shuangming Du ◽  
Congwei Li ◽  
Huiling Du ◽  
...  

The Ni-65wt%WC cladding layers were prepared on the surface of Q235 using laser cladding technology, in which the effect of heat treatment on microstructure and tribocorrosion performance was investigated. The results showed that the coating is mainly consisted of Ni, WC, and W2C, and a significant diffusion phenomenon is formed between the interfaces of WC/Ni matrix, benefited for the improvement of bonding layer between WC/Ni-based matrixes. Meanwhile, the crystallization of WC particles after heat treatment was more obvious than untreatment; the Ni matrix grain size was also grown remarkable, leading to the lower hardness and weaker plastic deformation resistance of Ni-65wt%WC coating. And the erosion results showed that the wear rate of coating gradually decreased with heat treatment temperature increasing, while brittle WC was not suitable for high impact wear conditions. Furthermore, with the increase of heat treatment temperature, the reciprocating wear performance showed that the friction coefficient and wear rate of Ni-65wt%WC coating decreased. And the friction coefficient and wear rate of the coating (700°C) in 3.5% NaCl solution were 0.15 and 4.82×10−8 mm3·N-1·m-1, respectively. Therefore, the comprehensive comparison showed that Ni-65WC coating had better performance in low impact reciprocating testing under corrosion environment, and heat treatment was helpful to further improve the tribocorrosion performance of laser cladding Ni-65wt%WC coating.


2009 ◽  
Vol 16 (03) ◽  
pp. 407-414 ◽  
Author(s):  
B. F. YOUSIF ◽  
ALVIN DEVADAS ◽  
TALAL F. YUSAF

In the current study, a multilayered polyester composite based on betelnut fiber mats is fabricated. The adhesive wear and frictional performance of the composite was studied against a smooth stainless steel at different sliding distances (0–6.72 km) and applied loads (20–200 N) at 2.8 m/s sliding velocity. Variations in specific wear rate and friction coefficient were evaluated at two different orientations of fiber mat; namely parallel (P–O) and normal (N–O). Results obtained were presented against sliding distance. The worn surfaces of the composite were studied using an optical microscope. The effect of the composite sliding on the stainless steel counterface roughness was investigated. The results revealed that the wear performance of betelnut fiber reinforced polyester (BFRP) composite under wet contact condition was highly dependent on test parameters and fiber mat orientation. The specific wear rate performance for each orientation showed an inverse relationship to sliding distance. BFRP composite in N–O exhibited better wear performance compared with P–O. However, the friction coefficient in N–O was higher than that in P–O at lower range of applied load. The predominant wear mechanism was debonding of fiber with no pullout or ploughing. Moreover, at higher applied loads, micro- and macrocracking and fracture were observed in the resinous region.


2011 ◽  
Vol 197-198 ◽  
pp. 1184-1187
Author(s):  
Jian Wei Sun ◽  
Li Qin Wang ◽  
Le Gu

The tribologcial performance of PTFE composites filled with different contents of spherical-graphite and Flake-graphite were comparatively evaluated on MM-200 test rig in block-on-ring configuration under dry condition. The microstructures of worn surfaces of PTFE composites were examined with SEM, and wear mechanisms was also analyzed. The changes of notched impact strength with the content changed were also considered. The results show that the tribological performance of spherical-graphite was better than flake-graphite with same weight filled: The friction coefficient of spherical-graphite, about 0.10~0.15, was under flake-graphite, about 0.12~0.18; the wear rate of spherical-graphite was lower than flake-graphite at each content. Notched impact strength of spherical-graphite was from 7.0kJ/m2 to 8.7 kJ/m2 with the content increased, while flake-graphite was fall rapidly from 8.5kJ/m2 to 3.0kJ/m2 with the content added more than 5wt. %.


2018 ◽  
Vol 149 ◽  
pp. 01090 ◽  
Author(s):  
Abdelmajid Hamdaoui ◽  
El Houcine Jaddi

The wheels of a railway axle are the most critical components of a train. These wheels are subjected to several forms of deterioration, including wear, which significantly influences the safety of traffic as well as the dynamic stability of railway vehicles and the lifetime of wheelsets. The objective of this work is to compare the effect of two friction materials of brake shoes at the damage and the wear rate of the ER8 steel wheels.


2010 ◽  
Vol 431-432 ◽  
pp. 385-388 ◽  
Author(s):  
Jian Hua Zhang ◽  
Pei Qi Ge ◽  
Lei Zhang ◽  
Yang Yu ◽  
Hui Li

The grind-hardening technology utilizes the grinding heat to harden the surface of the workpiece. The friction and wear performance of the grind-hardened layer is one of the important parameters. In this paper, the friction and wear performance of the grind-hardened layer was studied by the friction and wear experiment. The wear rate and the friction coefficient of the grind-hardened steel were studied by comparing with conventional hardened steel and non-hardened steel. The surface worn morphology and the collected wear debris of the grind-hardened steel were observed during the experiment. The wear mechanism of the grind-hardened steel was analyzed under different friction conditions.


2017 ◽  
Vol 24 (03) ◽  
pp. 1750028 ◽  
Author(s):  
ZHENXIA WANG ◽  
HAIRUI WU ◽  
NAIMING LIN ◽  
XIAOHONG YAO ◽  
ZHIYONG HE ◽  
...  

Plasma surface alloying (PSA) technique was employed with nickel as incident ions to prepare the TiNi/Ti2Ni alloyed layer on surface of Ti6Al4V. High-temperature friction and wear performance of TiNi/Ti2Ni alloyed layer and the Ti6Al4V substrate were evaluated at 500[Formula: see text]C. The results indicated that the TiNi/Ti2Ni alloyed layer exhibited superior high-temperature wear performance. The variations of friction coefficient were the same rule but wear rate was lower compared to Ti6Al4V substrate. The wear mechanism of TiNi/Ti2Ni alloyed layer was mainly slight abrasion and the Ti6Al4V substrate showed abrasion and oxidation wear. The friction coefficient of the TiNi/Ti2Ni alloyed layer decreased from 0.90 to 0.50 with the increase of temperature from room temperature to 500[Formula: see text]C.


2011 ◽  
Vol 80-81 ◽  
pp. 661-666
Author(s):  
Yun Cai Zhao ◽  
Jia Jia Mao ◽  
Chun Ming Deng ◽  
Wem You Ma

This paper is about the study of the KF301/WS2composite lubrication wear-resisting coatings prepared by supersonic plasma spraying. Basing on the research of the tribological characteristics, it has been discussed the self-lubricity and the failure mechanism showed by composite lubrication coatings under high-temperature conditions. Research shows that the wear rate of the coatings increased with the increase of the temperature. At 300°C, the wear rate is 1.02×10-4mg/m; At 750°C, the wear rate is 2.61×10-4mg/m. With the increase of temperature, friction coefficient of the coatings shows gradually increasing. When the temperature falls below 600°C, friction coefficient keeps around 0.08; At 750°C, the friction coefficient is 0.12. Temperature has great effect on the friction and wear properties ofthe self-lubricating wear-resisting coatings, mainly manifests in two aspects: first, with the increase of the temperature, under the common influence of thermal stress and frictional contact stress, it promotes the WS2solid lubricant film cracking, breakage, shedding process, and lubrication and abrasive resistance reduces; on the other hand, the WS2occurs chemical reaction under high temperature, generating lubricity phase of NiWO4, CrS, and lubricity phases are well supplied, lubricating film has an effect of continuous lubrication on the rubbing surface, So the coating shows low-friction, and it also represents that the KF-301/ WS2self-lubricating composite coating has good lubrication and abrasive resistance under high temperature.


Sign in / Sign up

Export Citation Format

Share Document