Research on Wireless Sensor Networks Data Fusion Algorithm Based on COA-BP

2014 ◽  
Vol 539 ◽  
pp. 247-250
Author(s):  
Xiao Xiao Liang ◽  
Li Cao ◽  
Chong Gang Wei ◽  
Ying Gao Yue

To improve the wireless sensor networks data fusion efficiency and reduce network traffic and the energy consumption of sensor networks, combined with chaos optimization algorithm and BP algorithm designed a chaotic BP hybrid algorithm (COA-BP), and establish a WSNs data fusion model. This model overcomes shortcomings of the traditional BP neural network model. Using the optimized BP neural network to efficiently extract WSN data and fusion the features among a small number of original date, then sends the extracted features date to aggregation nodes, thus enhance the efficiency of data fusion and prolong the network lifetime. Simulation results show that, compared with LEACH algorithm, BP neural network and PSO-BP algorithm, this algorithm can effectively reduce network traffic, reducing 19% of the total energy consumption of nodes and prolong the network lifetime.

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 913
Author(s):  
Junaid Anees ◽  
Hao-Chun Zhang ◽  
Sobia Baig ◽  
Bachirou Guene Lougou ◽  
Thomas Gasim Robert Bona

Limited energy resources of sensor nodes in Wireless Sensor Networks (WSNs) make energy consumption the most significant problem in practice. This paper proposes a novel, dynamic, self-organizing Hesitant Fuzzy Entropy-based Opportunistic Clustering and data fusion Scheme (HFECS) in order to overcome the energy consumption and network lifetime bottlenecks. The asynchronous working-sleeping cycle of sensor nodes could be exploited to make an opportunistic connection between sensor nodes in heterogeneous clustering. HFECS incorporates two levels of hierarchy in the network and energy heterogeneity is characterized using three levels of energy in sensor nodes. HFECS gathers local sensory data from sensor nodes and utilizes multi-attribute decision modeling and the entropy weight coefficient method for cluster formation and the cluster head election procedure. After cluster formation, HFECS uses the same techniques for performing data fusion at the first hierarchical level to reduce the redundant information flow from the first-second hierarchical levels, which can lead to an improvement in energy consumption, better utilization of bandwidth and extension of network lifetime. Our simulation results reveal that HFECS outperforms the existing benchmark schemes of heterogeneous clustering for larger network sizes in terms of half-life period, stability period, average residual energy, network lifetime, and packet delivery ratio.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mingxin Yang ◽  
Jingsha He ◽  
Yuqiang Zhang

Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.


2013 ◽  
Vol 321-324 ◽  
pp. 600-603
Author(s):  
Wei Liu ◽  
Qin Sheng Du ◽  
Le Le Wang

Wireless sensor networks integrated four technologies including sensor, embedded computing, network technology and wireless communication. It is a new type of non-infrastructure wireless network. In this paper, a data fusion method has been brought forward based on wireless sensor networks, and through an algorithm simulation test, It is proved that the algorithm is effective to reduce the energy consumption of the network, and extend the lifetime of the network.


Author(s):  
Yousef S. Kavian ◽  
Hadi Rasouli

The energy efficiency is a main challenging issue for employing wireless sensor networks (WSNs) in extreme environments where the media access progress consumes the main part of network energy. The IEEE 802.15.4 is adopted in low complexity, ultra-low power and low data rate wireless sensor applications where the energy consumption of nodes should be managed carefully in harsh and inaccessible environments. The beacon-enabled mode of the IEEE 802.15.4 provides a power management scheme. When the network traffic is variable, this mode does not work as well and the coordinator is not capable for estimating the network traffic and adjusting proper duty cycle dynamically. In this chapter an approach for estimating network traffic in star topology is proposed to overcome this issue where the coordinator could estimate the network traffic and dynamically adjusts duty cycle proportion to the variation of network traffic. The simulation results demonstrate the superiority of proposed approach for improving the energy consumption, throughput and delay in comparison with the IEEE 802.15.4 under different traffic conditions.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


2013 ◽  
Vol 706-708 ◽  
pp. 635-638
Author(s):  
Yong Lv

Wireless Sensor Networks consisting of nodes with limited power are deployed to collect and distribute useful information from the field to the other sensor nodes. Energy consumption is a key issue in the sensor’s communications since many use battery power, which is limited. In this paper, we describe a novel energy efficient routing approach which combines swarm intelligence, especially the ant colony based meta-heuristic, with a novel variation of reinforcement learning for sensor networks (ARNet). The main goal of our study was to maintain network lifetime at a maximum, while discovering the shortest paths from the source nodes to the sink node using an improved swarm intelligence. ARNet balances the energy consumption of nodes in the network and extends the network lifetime. Simulation results show that compared with the traditional EEABR algorithm can obviously improve adaptability and reduce the average energy consumption effectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianpo Li ◽  
Xue Jiang ◽  
I-Tai Lu

Wireless sensor networks are usually energy limited and therefore an energy-efficient routing algorithm is desired for prolonging the network lifetime. In this paper, we propose a new energy balance routing algorithm which has the following three improvements over the conventional LEACH algorithm. Firstly, we propose a new cluster head selection scheme by taking into consideration the remaining energy and the most recent energy consumption of the nodes and the entire network. In this way, the sensor nodes with smaller remaining energy or larger energy consumption will be much less likely to be chosen as cluster heads. Secondly, according to the ratio of remaining energy to distance, cooperative nodes are selected to form virtual MIMO structures. It mitigates the uneven distribution of clusters and the unbalanced energy consumption of the whole network. Thirdly, we construct a comprehensive energy consumption model, which can reflect more realistically the practical energy consumption. Numerical simulations analyze the influences of cooperative node numbers and cluster head node numbers on the network lifetime. It is shown that the energy consumption of the proposed routing algorithm is lower than the conventional LEACH algorithm and for the simulation example the network lifetime is prolonged about 25%.


2011 ◽  
Vol 230-232 ◽  
pp. 283-287
Author(s):  
You Rong Chen ◽  
Tiao Juan Ren ◽  
Zhang Quan Wang ◽  
Yi Feng Ping

To prolong network lifetime, lifetime maximization routing based on genetic algorithm (GALMR) for wireless sensor networks is proposed. Energy consumption model and node transmission probability are used to calculate the total energy consumption of nodes in a data gathering cycle. Then, lifetime maximization routing is formulated as maximization optimization problem. The select, crosss, and mutation operations in genetic algorithm are used to find the optimal network lifetime and node transmission probability. Simulation results show that GALMR algorithm are convergence and can prolong network lifetime. Under certain conditions, GALMR outperforms PEDAP-PA, LET, Sum-w and Ratio-w algorithms.


2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668968 ◽  
Author(s):  
Sunyong Kim ◽  
Chiwoo Cho ◽  
Kyung-Joon Park ◽  
Hyuk Lim

In wireless sensor networks powered by battery-limited energy harvesting, sensor nodes that have relatively more energy can help other sensor nodes reduce their energy consumption by compressing the sensing data packets in order to consequently extend the network lifetime. In this article, we consider a data compression technique that can shorten the data packet itself to reduce the energies consumed for packet transmission and reception and to eventually increase the entire network lifetime. First, we present an energy consumption model, in which the energy consumption at each sensor node is derived. We then propose a data compression algorithm that determines the compression level at each sensor node to decrease the total energy consumption depending on the average energy level of neighboring sensor nodes while maximizing the lifetime of multihop wireless sensor networks with energy harvesting. Numerical simulations show that the proposed algorithm achieves a reduced average energy consumption while extending the entire network lifetime.


Sign in / Sign up

Export Citation Format

Share Document