Finite Element Analysis for Static Behaviour of the CNC Turning Machine Spindle

2014 ◽  
Vol 555 ◽  
pp. 555-560 ◽  
Author(s):  
Doru Bardac ◽  
Constantin Dogariu

This paper presents a method to investigate the characteristics of a turning high-speed spindle system. The geometric quality of high-precision parts is highly dependent on the performance of the entire machining system,especially by the main spindle behaviour. The machine tool main spindle units is focused on direct driven spindle units for high-speed and high performance cutting. This paper analyzes the static behavior for a turning machine spindle and presents some activities to improve the CAD model for such complex systems. The proposed models take into account the spindle with the detailed bearing system. The analysis was performed during the design activity and was based on Finite Elements Method. Starting from the 3D designed model, using FEM done by means of ANSYS analysis the structure stiffness was evaluated and, by consequence, the influence on the machine tool precision. The aim of this paper is to develop a finite element model of the machine spindle system and to use this method for design optimization. The 3D model was designed using the SolidWorks CAD software. The static analysis was completed by modal, harmonic response and thermal analysis, but their results will be presented in other papers.

2012 ◽  
Vol 479-481 ◽  
pp. 1442-1445
Author(s):  
Xian Zhao Jia ◽  
Yong Jian Yu ◽  
Hong Bin Liu

This paper establishes the finite element model of main spindle in the test rig for high-speed railway bearing. Utilizing the finite element analysis software ANSYS, the modal analysis for spindle is carried on. Preliminary determination is that spindle resonance occurs. Structural optimization is carried out by increasing first natural frequency and reducing weight of main spindle in order to avoid resonance. The results showed that the position of support bearings is determined. The first natural frequency is increased by reducing spindle weight. The dynamic performance of the spindle is improved, avoiding the resonance region effectively.


2011 ◽  
Vol 399-401 ◽  
pp. 1806-1811
Author(s):  
Yong Hong Chen ◽  
Peng Chen ◽  
Ai Qin Tian

The finite element model of the roof of aluminum high-speed train was established, double ellipsoid heat source was employed, and heat elastic-plastic theory was used to simulate welding residual stress of the component under different welding sequence based on the finite element analysis software SYSWELD. The distribution law of welding residual stress was obtained. And the effects of the welding sequence on the value and distribution of residual stress was analyzed. The numerical results showed that the simulation data agree well with experimental test data. The maximum residual stress appears in the weld seam and nearby. The residual stress value decreases far away from the welding center. Welding sequence has a significant impact on the final welding residual stress when welding the roof of aluminum body. The side whose residual stress needs to be controlled should be welded first.


Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


2013 ◽  
Vol 683 ◽  
pp. 556-559
Author(s):  
Bin Bin Jiao ◽  
Fu Sheng Yu ◽  
Yun Jiang Li ◽  
Rong Lu Zhang ◽  
Gui Lin Du ◽  
...  

In order to study the distribution of the stress field in the high-speed intermittent cutting process, finite element model of high-speed intermittent cutting is established. Exponential material model of the constitutive equation and adaptive grid technology are applied in the finite element analysis software AdvantEdge. The material processing is simulated under certain cutting conditions with FEM ( Finite Element Method ) and the distribution of cutting force, stress field, and temperature field are received. A periodic variation to the cutting force and temperature is showed in the simulation of high-speed intermittent cutting. Highest value of the milling temperature appears in front contacting area of the knife -the chip.and maximum stress occurs at the tip of tool or the vicinity of the main cutting edge. The analysis of stress and strain fields in-depth is of great significance to improve tool design and durability of tool.


2011 ◽  
Vol 52-54 ◽  
pp. 1206-1211 ◽  
Author(s):  
Huai Xing Wen ◽  
Mei Yan Wang

The thermal characteristics of the motorized spindle determines maching qualities and cutting capabilities, and is one of the important factors influencing the precision of the high speed NC machine tool. To improve the performance of the high speed machine tool, it is important to study the thermal characteristics of the motorized spindle. It had been studied in two ways: one is finite element analysis by Ansys software, in which the finite element analysis model was built. According to the actual working condition, the heat source and the heat transfer coefficient of every part are calculated. On this basis, the temperature field and temperature rises were gotten in Ansys software. The other way is temperature rises experiment on the motorized spindle test platform. The result was shown in the form of curve. These two ways shown the same result: the highest temperature rise appears in the area of electromotor, then followed by the rolling bearing .The result provides the necessary theory basis for optimizing the structure of the motorized spindle and establishes a basis for the research and application about the high speed spindle.


2011 ◽  
Vol 215 ◽  
pp. 89-94 ◽  
Author(s):  
Jing Zhu Pang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
Zhou Ping Wu

This paper presents the effects of spindle system configuration on the dynamic and static characteristics of high speed grinding. A 3D physical mode of high-speed grinding motorized spindle system with rotation speed of 150m/s was provided. The motorized spindle system consists of bearings, rotor, stator, spindle housing and grinding wheel. Based on the finite element method (FEM), the static characteristics, dynamic and the transient response are analyzed based on the finite element analysis software NASTRAN. It is shown that the spindle overhanging, bearing span have a significant effort on spindle deflection. The dynamic analysis shows no resonance will happen during its speed range. The methods and solutions for the motorized spindle system design and engineering applications was given in this paper.


2011 ◽  
Vol 189-193 ◽  
pp. 1849-1853 ◽  
Author(s):  
Jing Zhu Pang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
Zhen Xin Zhou

Grinding is one of the most important operations in material processing. The study on grinding mechanism is difficult to carry out because of the difficulty in measuring the actual grinding temperature, stress and strain by experiments. Finite element analysis software Deform-3D is employed to create the Johnson-Cook material constitutive model for high-speed grinding simulation. Grinding model was constructed to reflect the temperature, strain and strain rate in the process of grinding 40Cr steel. The temperature of grinding area in simulation is analyzed to verify whether the finite element model is reasonable.


2021 ◽  
Vol 294 ◽  
pp. 04004
Author(s):  
YiChen Fang

The history of the development of Ultra-High Performance Concrete (UHPC) shear walls and the current status of today’s research as well as the future development prospects are comprehensively collated. The analysis process and conclusive results of the present-day domestic and international research on UHPC shear walls are highlighted. The load displacement curves, hysteresis curves and skeleton lines of ultra-high performance concrete shear walls under different experimental loads are collated and compared. Integrate the corresponding equations for shear bearing capacity and equations for the overall specimen load displacement curves. A finite element model of the ultra-high performance concrete shear wall is established to simulate and perform non-linear finite element analysis of its force process under unidirectional horizontal loading.


2015 ◽  
Vol 9 (1) ◽  
pp. 150-155 ◽  
Author(s):  
Ling Liu

In this paper, the CNC machine spindle after remanufacturing is researched as an object on uncertain constraints. At first, the equations of the machine spindle motion based on beam theory are established. This article uses Finite Element Analysis (FEA) function to analyze the remanufacturing of machine spindle system in the free mode and while static and the actual working conditions of multi-modal analysis of the spindle’s constraints state. By analysis it is known that the spindle vibrates and deforms at high speeds, and some assumptions are used to improve the unreasonable parameters, so that the spindle’s dynamic performance is more stable and reliable in the conditions of the high speed and heavy load operation. In addition, simplifying the cost and shortening the design cycle are the part of the analysis. The results provides an optimized design and a basis for precision control for the heavy-duty mechanical spindle system or machine spindle system.


Sign in / Sign up

Export Citation Format

Share Document