A System Embracing Observation of Different PTFE-Compounds in the Sealing Application of Rotary Manifolds

2015 ◽  
Vol 805 ◽  
pp. 123-130
Author(s):  
Julian Müller ◽  
Rene Illek ◽  
Gordana Michos ◽  
Karsten Faust ◽  
Markus Hubert ◽  
...  

Due to the increase of product complexity, 5 axes machining centers are becoming more and more important. Rotary tables are usually chosen for the 4th and 5th axis. Additional hydraulic or pneumatic mounting clamps are often needed on these tables. The feeding of the required media is realized by a so-called rotary manifold. For this application, commonly several rotary seals are used to seal the transmitted media. Different sealing materials, based on the carrier polymer PTFE, have been examined during this research. In tribological model tests, friction and wear characteristics have been investigated during an oscillating movement under dry run conditions and equal load spectrums (surface pressure). The counter running surfaces were specific textured as a result of various machining processes to research the effects of possible micro-and macroscopic patterning on the sealing system. The tribological behavior of the analyzed combinations and the topography of the counter surfaces have been evaluated.

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 319
Author(s):  
Zhiguo Lu ◽  
Chuanyu Du ◽  
Qingcai Chen ◽  
Tianying Niu ◽  
Na Wang ◽  
...  

The friction and wear characteristics of spike-tooth material (65Mn steel) of Spike-Tooth Harrow in a two-stage peanut harvester were studied in this paper. The friction and wear tests of pin and disc on 65 manganese steel were carried out on the tribometer, then the wear loss and the friction coefficient were studied. The wear loss of the pin was acquired by calculating the mass of the pin before and after the experiment using an electronic balance. According to the actual working environment of peanut spring-finger, four variable parameters are set up: load, speed, soil moisture and soil type. The friction and wear characteristics of pins were studied under different loads, speeds and different soil environments. After wearing, the worn surface of the material was observed by scanning microscope and the wear mechanism was studied. The experimental results show that the wear of the pin increases with the increase of load and decreases with the increase of rotational speed in the same rotation number. Especially in the case of the sandy soil with 20% in moisture, a maximum wear loss of the pin is achieved.


2021 ◽  
Vol 63 (5) ◽  
pp. 470-473
Author(s):  
Subramaniam Shankar ◽  
Rajavel Nithyaprakash ◽  
Balasubramaniam Rajasulochana Santhosh

Abstract Reduction in wear of artificial bio-implants results in the release of a lesser amount of wear particles into the blood stream. This paper focuses on analyzing the tribological behavior of ceramic and polyethylene bio-materials experimentally. Four different biomaterials namely Zirconia, Silicon Nitride, UHMWPE (ultra high molecular weight polyethylene) and PEEK (polyether ether ketone) are investigated for friction and wear coefficients using a pin on disc (PoD) tribometer. Alumina (Al2O3) is chosen as the disc material. Polyethylene based UHMWPE and PEEK are used as a pin material with the hemispherical end, while, Zirconia and Silicon Nitride ceramic materials are used in the form of spherical ball. 0.9 % NaCl (saline solution) is used as a lubricant medium. Zirconia showed a better reduction in friction and wear coefficient characteristics under lubrication conditions when compared with polyethylene and other ceramic materials. The estimated friction and wear coefficients would be helpful for surgeons and academicians to choose better wear-resistant bio-compatible materials for effectively design hip prosthesis. The present study compared the tribological behaviors of ceramic materials Si3N4 and ZrO2 and polyethylene materials PEEK and UHMWPE with a ceramic counterpart Al2O3 disc. In the lubrication case, ZrO2 showed a better reduction in friction and wear characteristics while in the dry case UHMWPE showed lesser wear characteristics.


2016 ◽  
Vol 83 ◽  
pp. 470-483 ◽  
Author(s):  
M.H. Mosarof ◽  
M.A. Kalam ◽  
H.H. Masjuki ◽  
Abdullah Alabdulkarem ◽  
M. Habibullah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document