Short term tribological behavior of ceramic and polyethylene biomaterials for hip prosthesis
Abstract Reduction in wear of artificial bio-implants results in the release of a lesser amount of wear particles into the blood stream. This paper focuses on analyzing the tribological behavior of ceramic and polyethylene bio-materials experimentally. Four different biomaterials namely Zirconia, Silicon Nitride, UHMWPE (ultra high molecular weight polyethylene) and PEEK (polyether ether ketone) are investigated for friction and wear coefficients using a pin on disc (PoD) tribometer. Alumina (Al2O3) is chosen as the disc material. Polyethylene based UHMWPE and PEEK are used as a pin material with the hemispherical end, while, Zirconia and Silicon Nitride ceramic materials are used in the form of spherical ball. 0.9 % NaCl (saline solution) is used as a lubricant medium. Zirconia showed a better reduction in friction and wear coefficient characteristics under lubrication conditions when compared with polyethylene and other ceramic materials. The estimated friction and wear coefficients would be helpful for surgeons and academicians to choose better wear-resistant bio-compatible materials for effectively design hip prosthesis. The present study compared the tribological behaviors of ceramic materials Si3N4 and ZrO2 and polyethylene materials PEEK and UHMWPE with a ceramic counterpart Al2O3 disc. In the lubrication case, ZrO2 showed a better reduction in friction and wear characteristics while in the dry case UHMWPE showed lesser wear characteristics.