Research on Network Communication Model of Intelligent Ship Handling Simulator

2011 ◽  
Vol 97-98 ◽  
pp. 787-793 ◽  
Author(s):  
Shen Hua Yang ◽  
Guo Quan Chen ◽  
Xing Hua Wang ◽  
Yue Bin Yang

Due to the target ship in the traditional ship handling simulator have not the ability to give way to other ships automatically to avoid collision, this paper put forward a new idea that bringing the hydraulic servo platform, six degrees of freedom ship mathematical model, the actual traffic flow, researching achievement of automatic anti-collision in research of the new pattern ship handling simulator, and successfully develop the Intelligent Ship Handling Simulator(ISHS for short). The paper focuse on the research on the network communication model of ISHS. We took the entire simulator system as three relatively independent networks, proposed a framework of communication network that combined IOCP model based on TCP with blocking model based on UDP, and gave the communication process and protocols of system. Test results indicate that this is an effective way to improve the ownship capacity of ship handling simulator and meet the need of multi-ownship configuration of desktop system of ship handling simulator.

Author(s):  
Abigail Niesen ◽  
Anna L Garverick ◽  
Maury Hull

Abstract Maximum total point motion (MTPM), the point on a baseplate that migrates the most, has been used to assess the risk of tibial baseplate loosening using radiostereometric analysis (RSA). Two methods for determining MTPM for model-based RSA are to use either 5 points distributed around the perimeter of the baseplate or to use all points on the 3D model. The objectives were to quantify the mean difference in MTPM using 5 points vs. all points, compute the percent error relative to the 6-month stability limit for groups of patients, and to determine the dependency of differences in MTPM on baseplate size and shape. A dataset of 10,000 migration values was generated using the mean and standard deviation of migration in six degrees of freedom at 6 months from an RSA study. The dataset was used to simulate migration of 3D models (two baseplate shapes and two baseplate sizes) and calculate the difference in MTPM using 5 virtual points vs. all points and the percent error (i.e. difference in MTPM/stability limit) relative to the 6-month stability limit. The difference in MTPM was about 0.02 mm, or 4% percent relative to the 6-month stability limit, which is not clinically important. Furthermore, results were not affected by baseplate shape or size. Researchers can decide whether to use 5 points or all points when computing MTPM for model-based RSA. The authors recommend using 5 points to maintain consistency with marker-based RSA.


2005 ◽  
Vol 49 (02) ◽  
pp. 69-79 ◽  
Author(s):  
Ming-Chung Fang ◽  
Jhih-Hong Luo ◽  
Ming-Ling Lee

In the paper, a simplified six degrees of freedom mathematical model encompassing calm water maneuvering and traditional seakeeping theories is developed to simulate the ship turning circle test in regular waves. A coordinate system called the horizontal body axes system is used to present equations of maneuvering motion in waves. All corresponding hydrodynamic forces and coefficients for seakeeping are time varying and calculated by strip theory. For simplification, the added mass and damping coefficients are calculated using the constant draft but vary with encounter frequency. The nonlinear mathematical model developed here is successful in simulating the turning circle of a containership in sea trial conditions and can be extended to make the further simulation for the ship maneuvering under control in waves. Manuscript received at SNAME headquarters February 19, 2003; revised manuscript received January 27, 2004.


1997 ◽  
Vol 119 (4) ◽  
pp. 707-717 ◽  
Author(s):  
Milovan Z˘ivanovic´ ◽  
Miomir Vukobratovic´

The procedure of modeling and the complete general form mathematical model of manipulators with six degrees of freedom in cooperative work are presented in the paper, together with the solution of undefiniteness problem with respect to force distribution. For the first time, a system of active spatial six-degree-of-freedom mechanisms elastically interconnected with the object (dynamic environment) is modeled. The reason for the emergence of the undefiniteness problem with respect to force is explained and the procedure for solving this problem given. Unlike the approaches given in the available literature, the undefiniteness problem with respect to force is solved in accordance with physical phenomena. The modeling procedure is illustrated by a simplified example.


Author(s):  
Wong-Jong Kim ◽  
Shobhit Verma ◽  
Jie Gu

This paper presents a novel magnetically levitated (maglev) stage with nanoscale positioning capability in all six degrees of freedom (DOFs). The key aspect of this device is that its single moving part has no mechanical contact with its stationary base, which leads to no mechanical friction and stiction, and no wear particle generation. We present herein the mechanical design, instrumentation, and test results of this maglev stage. Currently it shows position resolution of 4 nm, position noise of 2 nm rms, hundreds-of-micrometer translational travel range, a-few-milliradian rotational travel range, and power consumption less than a fraction of a Watt per axis. This maglev stage can be used in numerous applications such as manufacture of nanoscale structures, assembly and packaging on micro-size parts, vibration isolation for delicate instrumentation, and telepresence microsurgery.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Magdalena Żuk ◽  
Celina Pezowicz

Objective. The purpose of the present work was to assess the validity of a six-degrees-of-freedom gait analysis model based on the ISB recommendation on definitions of joint coordinate systems (ISB 6DOF) through a quantitative comparison with the Helen Hays model (HH) and repeatability assessment.Methods. Four healthy subjects were analysed with both marker sets: an HH marker set and four marker clusters in ISB 6DOF. A navigated pointer was used to indicate the anatomical landmark position in the cluster reference system according to the ISB recommendation. Three gait cycles were selected from the data collected simultaneously for the two marker sets.Results. Two protocols showed good intertrial repeatability, which apart from pelvic rotation did not exceed 2°. The greatest differences between protocols were observed in the transverse plane as well as for knee angles. Knee internal/external rotation revealed the lowest subject-to-subject and interprotocol repeatability and inconsistent patterns for both protocols. Knee range of movement in transverse plane was overestimated for the HH set (the mean is 34°), which could indicate the cross-talk effect.Conclusions. The ISB 6DOF anatomically based protocol enabled full 3D kinematic description of joints according to the current standard with clinically acceptable intertrial repeatability and minimal equipment requirements.


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 113
Author(s):  
Aleksey Kabanov ◽  
Vadim Kramar ◽  
Igor Ermakov

With the development of underwater technology, it is important to develop a wide range of autonomous and remotely operated underwater vehicles for various tasks. Depending on the problem that needs to be solved, vehicles will have different designs and dimensions, while the issues surrounding reduced costs and increasing the functionality of vehicles are relevant. This article discusses the development of inspection class experimental remotely operated vehicles (ROVs) for performing coastal underwater inspection operations, with a smaller number of thrusters, but having the same functional capabilities in terms of controllability (as vehicles with traditionally-shaped layouts). The proposed design provides controllability of the vehicle in six degrees of freedom, using six thrusters. In classical design vehicles, such controllability is usually achieved using eight thrusters. The proposed design of the ROV is described; the mathematical model, the results of modeling, and experimental tests of the developed ROVs are shown.


1970 ◽  
Vol 10 (03) ◽  
pp. 311-320 ◽  
Author(s):  
Ben G. Burke

Abstract A mathematical model was developed to compute the motions of semisubmersible drilling vessels in waves for a wide variety of semisubmersible configurations. The model was derived from a linear representation of motions, ocean waves, and forces. The semisubmersible is represented as a rigid space frame composed of a number of cylindrical members with arbitrary diameters, lengths and orientations. Forces on the semisubmersible are derived from anchorline properties, and hydrostatic hydrodynamic principles. A solution is obtained for motions in six degrees of freedom for a sinusoidal wave train of arbitrary height, period, direction and water depth. Results from the analysis of three semisubmersibles are compared with results from available model test data to verily the mathematical model. Introduction An accurate and complete representation of the response of a drilling vessel to waves is a valuable engineering tool for predicting vessel performance and designing drilling equipment. The performance and designing drilling equipment. The wave response for a floating vessel may be obtained to various degrees of accuracy from model tests or analytical means, as described by Barkley and Korvin-Kroukovsky and as applied by Bain. A review of the works cited shows that the evaluation of the wave response for a particular vessel requires considerable time and effort, either in model construction and testing or in computer programming and calculations. In order to reduce programming and calculations. In order to reduce the amount of time and effort required to evaluate a particular vessel, means were investigated to generalize and automate, on a digital computer, methods for evaluating wave response for vessels of arbitrary configuration. The mathematical model described in this paper is the result of such an investigation for semisubmersible-type drilling vessels. The paper presents a general description of the mathematical model and the basic principles and assumptions from which it was derived. The validity of the model is evaluated by comparing results of the analysis of three semisubmersibles with available model test data. MATHEMATICAL MODEL The mathematical model for calculating the motions of a semisubmersible in waves is derived from basic principles and empirical relationships in classical mechanics. All equations are derived for "small amplitude" waves and motions. The nonlinear equations that appear in the problem are replaced by "equivalent" linear equations in order to conform to the linear analysis method used in obtaining a solution. The model is implemented in a computer program that computes vessel response in all six degrees of freedom for a broad range of semisubmersible configurations and wave parameters. The basic elements in the theoretical model are outlined, with a more detailed discussion of the principles and derivations used to obtain the model principles and derivations used to obtain the model presented in the Appendix. presented in the Appendix. SEMISUBMERSIBLE DESCRIPTION AND EQUATIONS OF MOTION The semisubmersible is characterized as a space-frame of cylindrical members and is described geometrically by specifying end-coordinates and diameters for all of the members. Specification of the mass, moments of inertia, center of gravity and floating position are required to complete the description. The six equations of motion for the semisubmersible derive from Newton's second law for a rigid body. These differential equations, when written in matrix form, equate the product of the six-component acceleration vector, {x}, and the inertia matrix, I, to a six-component, force-moment vector, {FT}. SPEJ P. 311


Sign in / Sign up

Export Citation Format

Share Document