Pitting Corrosion of a Low Carbon Steel in Corrosive Environments: Experiments and Models
This paper presents the results of the combined study of experiments and modeling of the pitting corrosion behavior of low carbon steel. The effects of pH are elucidated via experiments on low carbon steel exposed to various corrosive media. The corrosion rates for the steel samples immersed in various corrosive media were determined by polarization experiments via a gamry potentiostat. The microscopic observations of the surfaces reveal clear evidence of corrosion pits that increase in size with increasing exposure duration. The observed pit size distribution and the evolution of pit size are modeled using statistical models. The implications of the results are used for the application of low carbon steels in corrosive environment.