Research on Intelligent Recommendation Method and its Application on Internet Bookstore

2010 ◽  
Vol 121-122 ◽  
pp. 447-452
Author(s):  
Qing Zhang Chen ◽  
Yu Jie Pei ◽  
Yan Jin ◽  
Li Yan Zhang

As the current personalized recommendation systems of Internet bookstore are limited too much in function, this paper build a kind of Internet bookstore recommendation system based on “Strategic Data Mining”, which can provide personalized recommendations that they really want. It helps us to get the weight attribute of type of book by using AHP, the weight attributes spoken on behalf of its owner, and we add it in association rules. Then the method clusters the customer and type of book, and gives some strategies of personalized recommendation. Internet bookstore recommendation system is implemented with ASP.NET in this article. The experimental results indicate that the Internet bookstore recommendation system is feasible.

2012 ◽  
Vol 198-199 ◽  
pp. 431-434
Author(s):  
Hua Lin Ma

As the current personalized recommendation methods of Internet bookstore are limited too much in function, this paper proposes a kind of Internet bookstore data mining method based on “Strategic”, which can provide personalized recommendations that they really want. It helps us to get the weight attribute of type of book by using AHP, the weight attributes spoken on behalf of its owner, and we add it in association rules. The experimental results indicate that the Internet bookstore recommendation method is feasible.


2014 ◽  
Vol 998-999 ◽  
pp. 1261-1265 ◽  
Author(s):  
Cheng Yi ◽  
Ying Xia ◽  
Zhi Yong Zhang

It expounds the big data and the relevant theoretical knowledge of big data mining, In view of the lack of effective analysis of the data resource access in delivery service of university library, this paper designs the personalized recommendation system service model of university library, with clustering analysis and association rules theory as the foundation of technology. And it introduces in detail how to cluster according to the user's attribute characteristics and how to introduce minimum support to opti-mize on the basis of the classical association rules algorithm. Experiments show that the improved algorithm can improves the utilization of library resources.


Author(s):  
Gandhali Malve ◽  
Lajree Lohar ◽  
Tanay Malviya ◽  
Shirish Sabnis

Today the amount of information in the internet growth very rapidly and people need some instruments to find and access appropriate information. One of such tools is called recommendation system. Recommendation systems help to navigate quickly and receive necessary information. Many of us find it difficult to decide which movie to watch and so we decided to make a recommender system for us to better judge which movie we are more likely to love. In this project we are going to use Machine Learning Algorithms to recommend movies to users based on genres and user ratings. Recommendation system attempt to predict the preference or rating that a user would give to an item.


Author(s):  
Başar Öztayşi ◽  
Ahmet Tezcan Tekin ◽  
Cansu Özdikicioğlu ◽  
Kerim Caner Tümkaya

Recommendation systems have become very important especially for internet based business such as e-commerce and web publishing. While content based filtering and collaborative filtering are most commonly used groups in recommendation systems there are still researches for new approaches. In this study, a personalized recommendation system based on text mining and predictive analytics is proposed for a real world web publishing company. The approach given in this chapter first preprocesses existing web contents, integrate the structured data with history of a specific user and create an extended TDM for the user. Then this data is used for prediction of the users interest in new content. In order to reach that point, SVM, K-NN and Naïve Bayesian methods are used. Finally, the best performing method is used for determining the interest level of the user in a new content. Based on the forecasted interest levels the system recommends among the alternatives.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xueping Su ◽  
Meng Gao ◽  
Jie Ren ◽  
Yunhong Li ◽  
Matthias Rätsch

With the continuous development of economy, consumers pay more attention to the demand for personalization clothing. However, the recommendation quality of the existing clothing recommendation system is not enough to meet the user’s needs. When browsing online clothing, facial expression is the salient information to understand the user’s preference. In this paper, we propose a novel method to automatically personalize clothing recommendation based on user emotional analysis. Firstly, the facial expression is classified by multiclass SVM. Next, the user’s multi-interest value is calculated using expression intensity that is obtained by hybrid RCNN. Finally, the multi-interest value is fused to carry out personalized recommendation. The experimental results show that the proposed method achieves a significant improvement over other algorithms.


2005 ◽  
Vol 1 (3) ◽  
pp. 129-135
Author(s):  
Jun Luo ◽  
Sanguthevar Rajasekaran

Association rules mining is an important data mining problem that has been studied extensively. In this paper, a simple but Fast algorithm for Intersecting attributes lists using hash Tables (FIT) is presented. FIT is designed for efficiently computing all the frequent itemsets in large databases. It deploys an idea similar to Eclat but has a much better computational performance than Eclat due to two reasons: 1) FIT makes fewer total number of comparisons for each intersection operation between two attributes lists, and 2) FIT significantly reduces the total number of intersection operations. Our experimental results demonstrate that the performance of FIT is much better than that of Eclat and Apriori algorithms.


2014 ◽  
Vol 651-653 ◽  
pp. 2185-2188
Author(s):  
Jin Ping Zou ◽  
Xiao Dong Xie

the accurate data mining problem is studied in this paper. With the increasing of data attributes, degree of complexity of the data storage is also increased, resulting in that in data mining process, the complexity of computation is too high, reducing the convergence of the data mining method, thereby reducing the efficiency of data mining. To this end, this paper presents a data mining method based on association rules algorithm. The data is made simplified processing, to obtain the association rules between data which provides the basis for data mining. According to the association rules between the data, the data in line with the minimum support degree is calculated, to achieve accurate data mining. Experimental results show that the proposed algorithm for data mining, can improve mining efficiency, and achieve the desired results.


2018 ◽  
Vol 36 (3) ◽  
pp. 443-457 ◽  
Author(s):  
Kaigang Yi ◽  
Tinggui Chen ◽  
Guodong Cong

Purpose Nowadays, database management system has been applied in library management, and a great number of data about readers’ visiting history to resources have been accumulated by libraries. A lot of important information is concealed behind such data. The purpose of this paper is to use a typical data mining (DM) technology named an association rule mining model to find out borrowing rules of readers according to their borrowing records, and to recommend other booklists for them in a personalized way, so as to increase utilization rate of data resources at library. Design/methodology/approach Association rule mining algorithm is applied to find out borrowing rules of readers according to their borrowing records, and to recommend other booklists for them in a personalized way, so as to increase utilization rate of data resources at library. Findings Through an analysis on record of book borrowing by readers, library manager can recommend books that may be interested by a reader based on historical borrowing records or current book-borrowing records of the reader. Research limitations/implications If many different categories of book-borrowing problems are involved, it will result in large length of encoding as well as giant searching space. Therefore, future research work may be considered in the following aspects: introduce clustering method; and apply association rule mining method to procurement of book resources and layout of books. Practical implications The paper provides a helpful inspiration for Big Data mining and software development, which will improve their efficiency and insight on users’ behavior and psychology. Social implications The paper proposes a framework to help users understand others’ behavior, which will aid them better take part in group and community with more contribution and delightedness. Originality/value DM technology has been used to discover information concealed behind Big Data in library; the library personalized recommendation problem has been analyzed and formulated deeply; and a method of improved association rules combined with artificial bee colony algorithm has been presented.


Sign in / Sign up

Export Citation Format

Share Document