Study on Key Technologies of Practical DNC System

2010 ◽  
Vol 139-141 ◽  
pp. 1184-1187 ◽  
Author(s):  
Sheng Fang Zhang ◽  
Chang Jun Ji ◽  
Zhi Hua Sha ◽  
Chen Hao Ma

Aim at the communication problems of computer and NC machine tool, a practical DNC system is developed in this paper. A three-layer control structure mode – which is composed by the unit layer, DNC computer workstation layer and NC system equipment layer – is presented. Based on its good real-time capability and high reliability, CAN field-bus is introduced into the DNC communication system construction, the network topology is constructed and related hardware is chosen properly. Using VC++6.0 as development tool, and assisted with special compiling tools LEX&YACC, 3D standard graphic library OpenGL and database Microsoft Access, and based on the multi-task and multi-thread technologies, the software of the system is developed. The system has the characteristics of reliable operation, simple structure and high real-time capability, can improve the efficiency of NC machining process obviously, and has a certain application prospect in the middle and small scale manufacturing enterprises of our country.

Author(s):  
Zhiqian Sang ◽  
Xun Xu

Traditional Computer Numerical Control (CNC) machines use ISO6983 (G/M code) for part programming. G/M code has a number of drawbacks and one of them is lack of interoperability. The Standard for the Exchange of Product for NC (STEP-NC) as a potential replacement for G/M code aims to provide a unified and interoperable data model for CNC. In a modern CNC machine tool, more and more motors, actuators and sensors are implemented and connected to the NC system, which leads to large quantity of data being transmitted. The real-time Ethernet field-bus is faster and more deterministic and can fulfill the requirement of data transmission in the high-speed and high-precision machining scenarios. It can provide more determinism on communication, openness, interoperability and reliability than a traditional field-bus. With a traditional CNC system using G/M code, when the machining is interrupted by incidents, restarting the machining process is time-consuming and highly experience-dependent. The proposed CNC controller can generate just-in-time tool paths for feature-based machining from a STEP-NC file. When machining stoppage occurs, the system can recover from stoppage incidents with minimum human intervention. This is done by generating new tool paths for the remaining machining process with or without the availability of the original cutting tool. The system uses a real-time Ethernet field-bus as the connection between the controller and the motors.


Author(s):  
H Wu ◽  
H J Chen ◽  
P Meng ◽  
J G Yang

Cutting-force-induced errors are one of the major sources of error in numerical control (NC) machine tools. The error compensation technique is an effective way to improve the manufacturing accuracy of NC machine tools. Effective compensation relies on an accurate error model that can predict the errors exactly during the machining process. In the present paper a robust and accurate cutting-force-induced error model is built using a back-propagation (BP) neural network and a genetic algorithm (GA) for an NC twin-spindle lathe. The GA—BP neural network modelling technique not only enhances the prediction accuracy of the model but also reduces the training time of the BP neural network. A real-time compensation system of the cutting-force-induced error on the lathe is developed based on the cutting-force-induced error model. The errors were reduced by about 38 per cent after real-time compensation in a machining experiment.


2011 ◽  
Vol 188 ◽  
pp. 503-506
Author(s):  
Yong Lu ◽  
Dong Gao ◽  
Yi Lei Liu ◽  
Z. Sun

Ram is a very important component of heavy-duty floor type boring-milling machine, and thermal deformation is a significant source causing errors in machining process. The law of thermal deformation of ram is researched for real-time compensation for thermal deformation error of ram. Meanwhile, DRF function compensation is proposed based on 840D NC system. Real-time error compensator is made and proved to be available by experiment.


2008 ◽  
Vol 392-394 ◽  
pp. 121-124 ◽  
Author(s):  
Hong Yun Wang ◽  
G.F. Guo ◽  
Y.X. Li ◽  
Xi Lin Zhu

In this paper, a system was introduced, which bases on Flame Cutter NC System and software platform of LabVIEW which the USA NI company developed. Composing of NC machine, partition of modules and assignments, functions confirming, data processing of machining and control, structure of software by the numbers and realization method of two CPUs. The system makes use of multitasking of LabVIEW to make the programmer realize easily the task, which is difficulty to acquire in in tradition programme. It is a kind of comparatively convenient and swift thinking to realize system interface and multitasking by the platform of LabVIEW.


2021 ◽  
Vol 3 (1) ◽  
pp. 65-82
Author(s):  
Sören Henning ◽  
Wilhelm Hasselbring ◽  
Heinz Burmester ◽  
Armin Möbius ◽  
Maik Wojcieszak

AbstractThe Internet of Things adoption in the manufacturing industry allows enterprises to monitor their electrical power consumption in real time and at machine level. In this paper, we follow up on such emerging opportunities for data acquisition and show that analyzing power consumption in manufacturing enterprises can serve a variety of purposes. In two industrial pilot cases, we discuss how analyzing power consumption data can serve the goals reporting, optimization, fault detection, and predictive maintenance. Accompanied by a literature review, we propose to implement the measures real-time data processing, multi-level monitoring, temporal aggregation, correlation, anomaly detection, forecasting, visualization, and alerting in software to tackle these goals. In a pilot implementation of a power consumption analytics platform, we show how our proposed measures can be implemented with a microservice-based architecture, stream processing techniques, and the fog computing paradigm. We provide the implementations as open source as well as a public show case allowing to reproduce and extend our research.


2011 ◽  
Vol 130-134 ◽  
pp. 2316-2320
Author(s):  
Ke Zhang ◽  
Zheng Xing Cui ◽  
Li Ya Gai ◽  
Peng Ge ◽  
Dong Gao Cai

NC machine plays an irreplaceable role in the modern manufacturing because of its high machining processing accuracy, quality stable, flexibility. Through using the Renishaw ML10 laser interferometer detect the positioning accuracy and repositioning accuracy of X axis and Z axis of the HTC20 series of NC machine tools. According to the detection result compensate NC system to meet the machining accuracy requirement. The result shows that the error compensation of NC system is a effective method to improve the position accuracy of NC machine.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1723
Author(s):  
Félix Dubuisson ◽  
Miloud Rezkallah ◽  
Hussein Ibrahim ◽  
Ambrish Chandra

In this paper, the predictive-based control with bacterial foraging optimization technique for power management in a standalone microgrid is studied and implemented. The heuristic optimization method based on the social foraging behavior of Escherichia coli bacteria is employed to determine the power references from the non-renewable energy sources and loads of the proposed configuration, which consists of a fixed speed diesel generator and battery storage system (BES). The two-stage configuration is controlled to maintain the DC-link voltage constant, regulate the AC voltage and frequency, and improve the power quality, simultaneously. For these tasks, on the AC side, the obtained power references are used as input signals to the predictive-based control. With the help of the system parameters, the predictive-based control computes all possible states of the system on the next sampling time and compares them with the estimated power references obtained using the bacterial foraging optimization (BFO) technique to get the inverter current reference. For the DC side, the same concept based on the predictive approach is employed to control the DC-DC buck-boost converter by regulating the DC-link voltage using the forward Euler method to generate the discrete-time model to predict in real-time the BES current. The proposed control strategies are evaluated using simulation results obtained with Matlab/Simulink in presence of different types of loads, as well as experimental results obtained with a small-scale microgrid.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1803
Author(s):  
Nasser Hosseinzadeh ◽  
Ahmed Al Maashri ◽  
Naser Tarhuni ◽  
Abdelsalam Elhaffar ◽  
Amer Al-Hinai

This article presents the development of a platform for real-time monitoring of multi-microgrids. A small-scale platform has been developed and implemented as a prototype, which takes data from various types of devices located at a distance from each other. The monitoring platform is interoperable, as it allows several protocols to coexist. While the developed prototype is tested on small-scale distributed energy resources (DERs), it is done in a way to extend the concept for monitoring several microgrids in real scales. Monitoring strategies were developed for DERs by making a customized two-way communication channel between the microgrids and the monitoring center using a long-range bridged wireless local area network (WLAN). In addition, an informative and easy-to-use software dashboard was developed. The dashboard shows real-time information and measurements from the DERs—providing the user with a holistic view of the status of the DERs. The proposed system is scalable, modular, facilitates the interoperability of various types of inverters, and communicates data over a secure communication channel. All these features along with its relatively low cost make the developed real-time monitoring platform very useful for online monitoring of smart microgrids.


2021 ◽  
Author(s):  
Luka Vranić ◽  
Tin Nadarević ◽  
Davor Štimac

Background: Barrett’s esophagus (BE) requires surveillance to identify potential neoplasia at early stage. Standard surveillance regimen includes random four-quadrant biopsies by Seattle protocol. Main limitations of random biopsies are high risk of sampling error, difficulties in histology interpretation, common inadequate classification of pathohistological changes, increased risk of bleeding and time necessary to acquire the final diagnosis. Probe-based confocal laser endomicroscopy (pCLE) has emerged as a potential tool with an aim to overcome these obvious limitations. Summary: pCLE represents real-time microscopic imaging method that offers evaluation of epithelial and subepithelial structures with 1000-fold magnification. In theory, pCLE has potential to eliminate the need for biopsy in BE patient. The main advantages would be real-time diagnosis and decision making, greater diagnostic accuracy and to evaluate larger area compared to random biopsies. Clinical pCLE studies in esophagus show high diagnostic accuracy and its high negative predictive value offers high reliability and confidence to exclude dysplastic and neoplastic lesions. However, it still cannot replace histopathology due to lower positive predictive value and sensitivity. Key messages: Despite promising results, its role in routine use in patients with Barrett’s esophagus remains questionable primarily due to lack of well-organized double-blind randomized trials.


Sign in / Sign up

Export Citation Format

Share Document