Structure and Electrical Properties of Lead-Free (Bi0.5Na0.5)TiO3-Ba(Sn,Ti)O3 Ceramics

2010 ◽  
Vol 148-149 ◽  
pp. 232-235 ◽  
Author(s):  
Chun Huy Wang

Extending the investigations on (Bi0.5Na0.5)TiO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Bi0.5Na0.5)TiO3-Ba(Sn,Ti)O3. X-ray diffraction analysis revealed that, during sintering, all of the Ba(Sn,Ti)O3 diffuses into the lattice of (Bi0.5Na0.5)TiO3 to form a solid solution, in which a rhombohedral phase with a perovskite structure was found. It was found that the samples with a low content of Ba(Sn0.06Ti0.94)O3 exhibit relatively good physical and electric properties. For 0.98(Bi0.5Na0.5)TiO3-0.02Ba(Sn0.06Ti0.94)O3 ceramics, the electromechanical coupling coefficients of the planar mode kp and the thickness mode kt reach 0.16 and 0.57, respectively, at the sintering of 1100oC for 3 h. The ratio of thickness coupling coefficient to planar coupling coefficient is 3.56. For 0.98(Bi0.5Na0.5)TiO3-0.02Ba(Sn0.06Ti0.94)O3 ceramics, the relative density and the thickness coupling coefficient kt reach 98.1% and 0.58, respectively, at the sintering of 1100oC for 5 h. With suitable Ba(SnxTi1-x)O3 concentration and sintering condition, a dense microstructure and good electrical properties were obtained.

2011 ◽  
Vol 687 ◽  
pp. 348-353
Author(s):  
Chun Huy Wang

Lead-free (1-x)(Bi0.5Na0.5)TiO3–x(Na0.5K0.5)NbO3(x<0.1) ceramics have been prepared by the conventional mixed oxide process. X-ray diffraction analysis revealed that, during sintering, all of the (Na0.5K0.5)NbO3diffuse into the lattice of (Bi0.5Na0.5)TiO3to form a solid solution and the hexagonal phase with a perovskite structure. The samples with a low content of (Na0.5K0.5) NbO3exhibit relatively good physical and electrical properties. For 0.96(Bi0.5Na0.5) TiO3–0.04 (Na0.5K0.5) NbO3ceramics, the electromechanical coupling coefficients of the planar modekpand the thickness modektreach 0.25 and 0.52, respectively, after sintering at 1100 °C for 5 h. The ratio of the thickness coupling coefficient to the planar coupling coefficient is 2.08. With suitable (Na0.5K0.5)NbO3concentration and sintering conditions, a dense microstructure and good electrical properties are obtained. Our results show that 0.96(Bi0.5Na0.5)TiO3–0.04(Na0.5K0.5)NbO3solid solution ceramics are promising lead-free ceramics for high-frequency electromechanical transducer applications.


2013 ◽  
Vol 368-370 ◽  
pp. 760-763
Author(s):  
Chun Huy Wang ◽  
Ming Qiu Wei

(Na0.5K0.5)NbO3 with Bi0.5(Na0.97K0.03)0.5TiO3 with x≤0.05 has been prepared by the conventional mixed oxide process. X-ray diffraction analysis revealed that, during sintering, all the Bi(Na0.97K0.03)TiO3 diffuses into the lattice of (Na0.5K0.5)NbO3 to form a solid solution with a perovskite structure. A morphotropic phase boundary (MPB) between orthorhombic (O) and rhombohedral (R) was found at the composition 0.98(Na0.5K0.5)NbO3-0.02Bi0.5(Na0.97K0.03)0.5TiO3 [abbreviated as 0.98NKN-0.02BNKT] with correspondingly enhanced dielectric and piezoelectric properties. For 0.98NKN-0.02BNKT ceramics, the electromechanical coupling coefficients of the planar mode kp and the thickness mode kt reach 0.33 and 0.49, respectively, after sintering at 1100 oC for 3 h. The ratio of the thickness coupling coefficient to the planar coupling coefficient is 1.48. With suitable Bi0.5(Na0.97K0.03)0.5TiO3 concentration, a dense microstructure and good electrical properties are obtained.


2011 ◽  
Vol 201-203 ◽  
pp. 2772-2775
Author(s):  
Chun Huy Wang

Lead-free (1-x)(Na0.5K0.5)NbO3-x(Na0.5Bi0.5)TiO3(x=0.02, 0.04, 0.06, 0.08, and 0.10) ceramics have been prepared by the conventional mixed oxide process. For 0.98(Na0.5K0.5)NbO3-0.02(Na0.5Bi0.5)TiO3ceramics, the electromechanical coupling coefficients of the planar mode kp and the thickness mode kt reach 0.33 and 0.62, respectively, after sintering at 1100°C for 5 h. The ratio of the thickness coupling coefficient to the planar coupling coefficient is 1.88. Our results show that 0.98(Na0.5K0.5)NbO3-0.02(Na0.5Bi0.5)TiO3solid solution ceramics are promising lead-free ceramics for high-frequency electromechanical transducer applications.


2014 ◽  
Vol 602-603 ◽  
pp. 791-794
Author(s):  
Chun Huy Wang

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3Bi0.5(Na0.90K0.10)0.5TiO3 [NKN-BNK. (Na0.5K0.5)NbO3 with 1 ~ 5 mol% Bi0.5(Na0.90K0.10)0.5TiO3 has been prepared following the conventional mixed oxide process. It can be concluded that the NKN-BNKT ceramics have orthorhombic structures in the case x 0.03. With increasing BNKT content (x=0.04 to 0.05), however, the structure changes from orthorhombic to rhombohedral phase. Above results demonstrated that the MPB between orthorhombic and rhombohedral phases exits in the solid solution with the BNKT content of x=0.03. At the MPB composition, the cryctalline structure of ceramics is considered to be a coexistence of orthorhombic and rhombohedral phase. Owing to the phase coexistence at the phase boundary, there exists a different symmetry regions (DSR) near the MPB. The DSR boundary motion increases the dielectric permittivity and piezoelectric coefficients. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (KT33), planar coupling coefficient (kp), thickness coupling coefficient (kt) and piezoelectric constant (d33)of 0.98NKN-0.02BNKT ceramics were 1180, 30%, 58%, and 180, respectively.


2013 ◽  
Vol 479-480 ◽  
pp. 3-7
Author(s):  
Chun Huy Wang

In the present study, various quantities of Bi2O3were added into 0.98(Na0.5K0.5)NbO3-0.02Bi(Na0.93K0.07)TiO3(0.98NKN-0.02BNKT) ceramics. It was found that 0.98NKN-0.02BNKTwith the addition of 0~0.5 wt.% Bi2O3exhibit relatively good piezoelectric properties. For 0.98NKN-0.02BNKT ceramics, the electromechanical coupling coefficients of the planar modekpand the thickness modektreach 0.40 and 0.47,respectively. For 0.98NKN-0.02BNKT ceramics with the addition of 0.3 wt.% Bi2O3, the electromechanical coupling coefficients ofthe planar modekpand the thickness modektreach 0.50 and 0.53, respectively. It is obvious that 0.98NKN-0.02BNKT solid solution ceramics by adding low quantities of Bi2O3is one of the promising lead-free ceramics for electromechanical transducer applications.


2010 ◽  
Vol 434-435 ◽  
pp. 413-416 ◽  
Author(s):  
Chun Huy Wang

The 0.98(Na0.5K0.5)NbO3–0.02Ba(Zr0.04Ti0.96)O3 ceramics have been prepared following the conventional mixed oxide process. X-ray diffraction analysis revealed that, during sintering, all of the Ba(Zr0.04Ti0.96)O3 diffuses into the lattice of (Na0.5K0.5)NbO3 to form a solid solution, in which a orthorhombic phase with a perovskite structure was found In order to improve the sinterability of the ceramics, Bi2O3 additions were used as a sintering aid. The electromechanical coupling coefficients of the planar mode kp and the thickness mode kt reach 0.3 and 0.55, respectively, at the sintering of 1100oC for 5 h. For 0.98NKN-0.02BZT ceramics by doping 0.5 wt.% Bi2O3, the electromechanical coupling coefficients of the planar mode kp and the thickness mode kt reach 0.21 and 0.57, respectively. The ratio of thickness coupling coefficient to planar coupling coefficient is 2.7.


2011 ◽  
Vol 415-417 ◽  
pp. 1051-1054
Author(s):  
Chun Huy Wang

In the present study, various quantities of Bi2O3were added into 0.98(Na0.5Bi0.5)TiO3-0.02Ba(Sn0.08Ti0.92)O3(0.98NBT-0.02BST) ceramics. High-density samples were obtained through the addition of Bi2O3into 0.98NBT-0.02BST ceramic. It was found that 0.98NBT-0.02BST with the addition of 0~3.0 wt.% Bi2O3exhibit relatively good piezoelectric properties. For 0.98NBT-0.02BST ceramic with the addition of 2 wt.% Bi2O3, the electromechanical coupling coefficients of the planar mode kp and the thickness mode kt reach 0.12 and 0.61, respectively, at the sintering of 1100oC for 3 h. The ratio of thickness coupling coefficient to planar coupling coefficient is 5.1. It is obvious that 0.98NBT-0.02BST solid solution ceramic by adding low quantities of Bi2O3is one of the promising lead-free ceramics for high frequency electromechanical transducer applications.


2011 ◽  
Vol 211-212 ◽  
pp. 152-155
Author(s):  
Chun Huy Wang

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3–Bi0.5(Na0.85K0.15)0.5TiO3[NKN-BNKT]. (Na0.5K0.5)NbO3with 2 ~ 6 mol% Bi0.5(Na0.85K0.15)0.5TiO3has been prepared following the conventional mixed oxide process. A morphotropic phase boundary (MPB) between orthorhombic (O) and hexagonal (H) was found at the composition 0.96NKN-0.04BNKT with correspondingly enhanced dielectric and piezoelectric properties. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (KT33), planar coupling coefficient (kp) and thickness coupling coefficient (kt)of 0.96NKN-0.04BNKT ceramics were 1273, 34% and 38%, respectively.


2012 ◽  
Vol 512-515 ◽  
pp. 1351-1354
Author(s):  
Chun Huy Wang

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3–Bi0.5(Na0.93K0.07)0.5TiO3 [NKN-BNKT]. (Na0.5K0.5)NbO3 with 2 ~ 6 mol% Bi0.5(Na0.93K0.07)0.5TiO3 has been prepared following the conventional mixed oxide process. A morphotropic phase boundary (MPB) between orthorhombic (O) and rhombohedral (R) was found at the composition 0.98NKN-0.02BNKT with correspondingly enhanced dielectric and piezoelectric properties. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (KT33), planar coupling coefficient (kp) and thickness coupling coefficient (kt)of 0.98NKN-0.02BNKT ceramics were 1040, 47% and 48%, respectively.


2011 ◽  
Vol 230-232 ◽  
pp. 12-15
Author(s):  
Chun Huy Wang

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3–Bi0.5(Na0.80K0.20)0.5TiO3[NKN-BNKT]. (Na0.5K0.5)NbO3with 2 ~ 6 mol% Bi0.5(Na0.80K0.20)0.5TiO3has been prepared following the conventional mixed oxide process. A morphotropic phase boundary (MPB) between orthorhombic (O) and tetragonal (T) was found at the composition 0.97NKN-0.03BNKT with correspondingly enhanced dielectric and piezoelectric properties. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (εr), planar coupling coefficient (kp) and thickness coupling coefficient (kt)of 0.97NKN-0.03BNKT ceramics were 1483, 32% and 31%, respectively.


Sign in / Sign up

Export Citation Format

Share Document