ANN Prediction of Coefficient of Friction and Sliding Wear Rates of Cast Al6061-Si3N4 Composites

2010 ◽  
Vol 159 ◽  
pp. 338-341 ◽  
Author(s):  
C.S. Ramesh ◽  
R. Keshavamurthy ◽  
D. Vineela ◽  
R. Archana

This work focuses on the prediction of tribological behavior of cast Al6061-Si3N4 composites using ANN technique owing to its wide spread popularity in accurate predictions of material properties. The cast composites were developed by stir cast method and its tribological behavior were experimentally evaluated using a pin-on-disc tribometer adopting loads and sliding velocities ranging from 20-100N and 0.314-1.574m/s respectively. The predictions of coefficient of friction and wear rates of matrix alloy and the developed cast composites by ANN approach do agree very closely with the experimental data. Keywords: ANN, Composites, coefficient of friction, wear rates.

2012 ◽  
Vol 507 ◽  
pp. 191-195 ◽  
Author(s):  
Pavol Hvizdoš ◽  
Viktor Puchý ◽  
Daniel Drdlík ◽  
Jaroslav Cihlář

Alumina and both tetragonal and cubic zirconia based composites with various volume fractions of constituents as well as with addition of carbon nanofibers were prepared by EPD. Mechanical properties (hardness, Youngs modulus) were measured by depth sensing indentation methods and related to chemical composition. Tribological behavior was studied using pin-on-disc technique at room temperatures in air at dry sliding. Coefficient of friction and wear rates were measured, the types of wear regimes were observed and damage micromechanisms identified.


Author(s):  
C. S. Ramesh ◽  
R. Keshavamurthy ◽  
B. H. Channabasappa

Si3N4 reinforced Al6061 composite is fabricated by liquid metallurgy technique. Si3N4 particles are nickel coated prior to addition to molten metal to improve its wettability and to ensure excellent bond between matrix and the reinforcement. Metallographic studies, friction and wear tests were carried out using pin on disc type machine. Coefficient of friction and wear rate were measured at loads varying from 20–100N and sliding velocities from 0.314–1.574m/s. It is observed that Al6061-4wt%Si3N4 composites exhibited lower wear rate and lower coefficient of friction when compared with matrix alloy under all the test conditions studied.


Author(s):  
C. S. Ramesh ◽  
T. B. Prasad

Graphite and carbon short fiber (Copper coated) reinforced (2 wt%) hypereutectic Al-17%Si alloy composites were prepared by liquid metallurgy route. Room temperature friction and wear properties of as cast hypereutectic Al-Si alloy reinforced with copper coated graphite and short carbon fibers were investigated both before and after heat-treatment. Friction and wear tests were conducted using a pin-on-disc machine under dry conditions. The loads were varied from 10 to 50N respectively. Results reveal that coefficient of friction and wear rate of the hybrid composite are lower than that of the matrix alloy in both heat treated and un-heat treated conditions. The coefficient of friction of the matrix alloy and its hybrid composite decreased with increased load up to 30N and increased beyond this load. The wear rates of both the matrix alloy and its hybrid composite increased with the increasing load. However at all the studied, the developed hybrid composite exhibited a lower coefficient of friction and wear rates when compared with the matrix alloy.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kalyan Kumar Singh ◽  
Saurabh Singh ◽  
Anil Kumar Shrivastava

Friction and wear behavior of silicon carbide based aluminum metal matrix composite and aluminum matrix alloy have been studied for sliding speeds of 3.14 m/s and 3.77 m/s and load range from 10 N to 30 N under dry and lubricated environment, respectively. The experiments were performed on pin on disk tribometer (Make: DUCOM). The composite was fabricated by stir casting process and has several challenges like inferior bonds and interfacial reaction products which will deteriorate the mechanical and tribological properties. Therefore, addition of reactive metal like magnesium (Mg) should be done which will lead to reduced solidification shrinkage, lower tendency towards hot tearing, and faster process cycles. Results have revealed that the developed composites have lower coefficient of friction and wear rates when compared with aluminum matrix alloy under dry and lubricated environment. Experimental results show that under dry condition coefficient of friction of both the matrix alloy and the composite decreases with increase in load, whereas it increases with increase in sliding speeds; on the other hand wear rates of both aluminum matrix alloy and the composites increase with increase in load as well as with sliding speeds. FESEM of worn surfaces are also used to understand the wear mechanisms.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
C. S. Ramesh ◽  
T. B. Prasad

Graphite and carbon short fiber (copper coated) reinforced (2 wt %) hypereutectic Al–17%Si alloy composites were prepared by liquid metallurgy route. Room temperature friction and wear properties of as-cast hypereutectic Al–Si alloy reinforced with copper coated graphite and short carbon fibers were investigated. Friction and wear tests were conducted using a pin-on-disk machine under dry sliding conditions. The loads (contact pressure) and sliding velocities have been varied from 10 N to 50 N (contact pressure of 0.12–0.60 MPa) and 0.3 m/s to 1.2 m/s, respectively. The results reveal that the coefficient of friction and the wear rate of the hybrid composite are lower than that of the matrix alloy. The coefficient of friction of the matrix alloy and its hybrid composite decreased with increased load of up to 30 N and increased beyond this load. The wear rates of both the matrix alloy and its hybrid composite increased with the increasing load. However, at all the loads and sliding velocities studied, the developed hybrid composite exhibited a lower coefficient of friction and wear rates when compared with the matrix alloy.


2021 ◽  
Vol 63 (5) ◽  
pp. 470-473
Author(s):  
Subramaniam Shankar ◽  
Rajavel Nithyaprakash ◽  
Balasubramaniam Rajasulochana Santhosh

Abstract Reduction in wear of artificial bio-implants results in the release of a lesser amount of wear particles into the blood stream. This paper focuses on analyzing the tribological behavior of ceramic and polyethylene bio-materials experimentally. Four different biomaterials namely Zirconia, Silicon Nitride, UHMWPE (ultra high molecular weight polyethylene) and PEEK (polyether ether ketone) are investigated for friction and wear coefficients using a pin on disc (PoD) tribometer. Alumina (Al2O3) is chosen as the disc material. Polyethylene based UHMWPE and PEEK are used as a pin material with the hemispherical end, while, Zirconia and Silicon Nitride ceramic materials are used in the form of spherical ball. 0.9 % NaCl (saline solution) is used as a lubricant medium. Zirconia showed a better reduction in friction and wear coefficient characteristics under lubrication conditions when compared with polyethylene and other ceramic materials. The estimated friction and wear coefficients would be helpful for surgeons and academicians to choose better wear-resistant bio-compatible materials for effectively design hip prosthesis. The present study compared the tribological behaviors of ceramic materials Si3N4 and ZrO2 and polyethylene materials PEEK and UHMWPE with a ceramic counterpart Al2O3 disc. In the lubrication case, ZrO2 showed a better reduction in friction and wear characteristics while in the dry case UHMWPE showed lesser wear characteristics.


2017 ◽  
Vol 24 (4) ◽  
pp. 485-494 ◽  
Author(s):  
Iskender Ozsoy ◽  
Adullah Mimaroglu ◽  
Huseyin Unal

AbstractIn this study, the influence of micro- and nanofiller contents on the tribological performance of epoxy composites was studied. The fillers are micro-Al2O3, micro-TiO2, and micro-fly ash and nano-Al2O3, nano-TiO2, and nanoclay fillers. The microfillers were added to the epoxy by 10%, 20%, and 30% by weight. The nanofillers were added to the epoxy by 2.5%, 5%, and 10%. Friction and wear tests were conducted using the pin-on-disc arrangement. Tribo elements consisted of polymer pin and DIN 1.2344 steel counterface disc. A load value of 15 N, a sliding speed of 0.4 m/s, a sliding distance of 2000 m, and dry atmospheric conditions were applied to test conditions. The results show that the friction coefficients and the specific wear rates of the nanofilled composites increase as the filler content increases. For microfiller-filled epoxy composites, these values decrease as filler content increases. The tribological performance of epoxy composites is enhanced by the addition of microfillers, and the higher enhancement is reached with the addition of 30% fly ash filler. Finally, the pin and disc worn surface images show the presence of adhesive and some abrasive wear mechanisms.


Author(s):  
Takashi Nogi

Some tribological properties of an ionic liquid were investigated by using a pin-on-disc friction and wear tester. Due to running-in, the coefficient of friction of the ionic liquid decreased with time to a very low value of 0.02 which suggests that the lubrication regime was hydrodynamic at the end of the tests. Anti-wear performance of the ionic liquid was substantially comparable to a paraffin-based oil.


Author(s):  
M. K. Surappa ◽  
Kunigal N. Shivakumar

This paper presents wear and friction properties of carbon-carbon composites (CCC) manufactured by resin transfer molding (RTM) process. During composite fabrication thickness stitching was employed to improve inter laminar tension and shear properties. Wear and Friction characteristics of carbon-carbon composites were evaluated using pin-on-disc set up. Results of test indicate that surface of composites having stitches in a perpendicular direction show increase in wear rates with increase in load.


2011 ◽  
Vol 465 ◽  
pp. 495-498 ◽  
Author(s):  
Pavol Hvizdoš ◽  
Annamária Duszová ◽  
Viktor Puchý ◽  
Orsolya Tapasztó ◽  
Peter Kun ◽  
...  

Tribological behavior of ZrO2 and Si3N4 based nanocomposites with addition of carbon nanofibres and nanotubes has been studied by the pin-on-disc technique. Friction coefficients were measured and recorded, wear rates were calculated in terms of material volume loss per load and sliding distance. The wear damage was studied using optical and electron microscopy and its mechanisms were identified. In monolithic materials the dominant wear mechanism was abrasion, in composites with CNF and with higher volume fraction of CNTs (5 and 10%) fiber pull-out and lubricating by the carbon phases occurred.


Sign in / Sign up

Export Citation Format

Share Document