Metal Label Pressed Protuberant Characters Recognition Based on Hidden Markov Model

2011 ◽  
Vol 187 ◽  
pp. 667-671
Author(s):  
Wei Chen

A recognition method of pressed protuberant characters based on Hidden Markov models and Neural Network is applied, which the surface curvature properties and the relation of metal label characters are analyzed in detail. The shape index of the characters is extracted. A neural network is used to estimate probabilities for the characters depended on the surface curvature properties, then deriving the best word choice from a sequence of state transition. It is shown in test that the proposed method can be used to recognize the pressed protuberant on metal label.

1996 ◽  
Vol 8 (1) ◽  
pp. 178-181 ◽  
Author(s):  
David J. C. MacKay

Several authors have studied the relationship between hidden Markov models and “Boltzmann chains” with a linear or “time-sliced” architecture. Boltzmann chains model sequences of states by defining state-state transition energies instead of probabilities. In this note I demonstrate that under the simple condition that the state sequence has a mandatory end state, the probability distribution assigned by a strictly linear Boltzmann chain is identical to that assigned by a hidden Markov model.


Author(s):  
Marius Ötting ◽  
Roland Langrock ◽  
Antonello Maruotti

AbstractWe investigate the potential occurrence of change points—commonly referred to as “momentum shifts”—in the dynamics of football matches. For that purpose, we model minute-by-minute in-game statistics of Bundesliga matches using hidden Markov models (HMMs). To allow for within-state dependence of the variables, we formulate multivariate state-dependent distributions using copulas. For the Bundesliga data considered, we find that the fitted HMMs comprise states which can be interpreted as a team showing different levels of control over a match. Our modelling framework enables inference related to causes of momentum shifts and team tactics, which is of much interest to managers, bookmakers, and sports fans.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yanxue Zhang ◽  
Dongmei Zhao ◽  
Jinxing Liu

The biggest difficulty of hidden Markov model applied to multistep attack is the determination of observations. Now the research of the determination of observations is still lacking, and it shows a certain degree of subjectivity. In this regard, we integrate the attack intentions and hidden Markov model (HMM) and support a method to forecasting multistep attack based on hidden Markov model. Firstly, we train the existing hidden Markov model(s) by the Baum-Welch algorithm of HMM. Then we recognize the alert belonging to attack scenarios with the Forward algorithm of HMM. Finally, we forecast the next possible attack sequence with the Viterbi algorithm of HMM. The results of simulation experiments show that the hidden Markov models which have been trained are better than the untrained in recognition and prediction.


2016 ◽  
Vol 19 (58) ◽  
pp. 1
Author(s):  
Daniel Fernando Tello Gamarra

We demonstrate an improved method for utilizing observed gaze behavior and show that it is useful in inferring hand movement intent during goal directed tasks. The task dynamics and the relationship between hand and gaze behavior are learned using an Abstract Hidden Markov Model (AHMM). We show that the predicted hand movement transitions occur consistently earlier in AHMM models with gaze than those models that do not include gaze observations.


2019 ◽  
Vol 24 (1) ◽  
pp. 14 ◽  
Author(s):  
Luis Acedo

Hidden Markov models are a very useful tool in the modeling of time series and any sequence of data. In particular, they have been successfully applied to the field of mathematical linguistics. In this paper, we apply a hidden Markov model to analyze the underlying structure of an ancient and complex manuscript, known as the Voynich manuscript, which remains undeciphered. By assuming a certain number of internal states representations for the symbols of the manuscripts, we train the network by means of the α and β -pass algorithms to optimize the model. By this procedure, we are able to obtain the so-called transition and observation matrices to compare with known languages concerning the frequency of consonant andvowel sounds. From this analysis, we conclude that transitions occur between the two states with similar frequencies to other languages. Moreover, the identification of the vowel and consonant sounds matches some previous tentative bottom-up approaches to decode the manuscript.


2000 ◽  
Vol 23 (4) ◽  
pp. 494-495
Author(s):  
Ingmar Visser

Page's manifesto makes a case for localist representations in neural networks, one of the advantages being ease of interpretation. However, even localist networks can be hard to interpret, especially when at some hidden layer of the network distributed representations are employed, as is often the case. Hidden Markov models can be used to provide useful interpretable representations.


Sign in / Sign up

Export Citation Format

Share Document