Design of a Digital Watermarking Scheme Based on Logistic Mapping

2011 ◽  
Vol 271-273 ◽  
pp. 1334-1338
Author(s):  
Yu Hua Zhu

A chaotic digital watermarking scheme based on logistic mapping was introduced. In the frequency domain, the chaos sequence embedded in DC component DC through using discrete cosine transform (DCT). Being of human visual system(HVS) masking properties, the watermarking adapt itself into the image, which ensure the watermark is invisible.

2011 ◽  
Vol 271-273 ◽  
pp. 1339-1342
Author(s):  
Yu Hua Zhu

A chaotic digital watermarking scheme based on logistic mapping is tested by experiments. Being of human visual system(HVS) masking properties, the watermarking adapt itself into the image, which ensure the watermark is invisible. Experimental results show that the proposed algorithm has good robustness for the common signal distortion (adding salt & pepper noise, median filtering, etc.) and geometric distortion (lossy compression, shear, etc).


2010 ◽  
Vol 20-23 ◽  
pp. 1136-1142
Author(s):  
Gui Feng ◽  
Yi Min Yang

The paper proposes an adaptive digital watermarking scheme based on chaos sequence and DCT transform. The scheme can choose the location for watermark inserting adaptively, and properly assign the embedding intensity in different inserting locations according to the characteristic of human visual system (HVS). On the other hand, this scheme combines chaos sequence and scrambling technique to improve the ability to withstand various attacks. The experimental results show that, the method can basically satisfy transparency and robustness requirement.


2011 ◽  
Vol 2 (2) ◽  
Author(s):  
B. Yudi Dwiandiyanta

Abstract. Comparison of Image Watermarking with the Wavelet Variety Packs and Discrete Cosine Transform. Watermarking is one method of copyright protection to combat the spread of the work of someone illegally. In this study, we compare watermarking algorithm in wavelet region and Discrete Cosine Transform (DCT). Color image is used as the host image, while the watermark image is used as a binary image of size 1 / 16 image of the host. Embedding process is based on Human Visual System (HVS), so hopefully gained an invisible watermark (invisible watermark). Embedding process performed by the additive algorithm. In both variety packs developed, the watermark is inserted in the high frequency components of the image. Wavelet used is the wavelet db4. DCT 4x4 blocks are used, which is expected to reduce the computational load. Tests showed that the two watermarking algorithms are generally resistant to granting noise, geometric image operations and image processing operations. Watermarking algorithm that was developed less defend against attacks-down pass filter and median filter, but has a very good performance against an attack-pass filter above. Keywords: image watermarking, wavelet, Discrete Cosine Transform (DCT), Human Visual System (HVS) Abstrak. Watermarking merupakan salah satu metode proteksi hak cipta untuk menanggulangi penyebaran karya seseorang secara ilegal. Pada penelitian ini dilakukan perbandingan algoritma watermarking pada kawasan wavelet dan Discrete Cosine Transform (DCT). Citra warna digunakan sebagai citra host, sedangkan sebagai citra watermark digunakan citra biner berukuran 1/16 citra host. Proses embedding dilakukan berdasarkan Human Visual System (HVS), sehingga diharapkan diperoleh watermark yang tidak kelihatan (invisible watermark). Proses embedding dilakukan dengan algoritma aditif. Pada kedua alihragam yang dikembangkan, watermark disisipkan pada komponen frekuensi tinggi citra. Wavelet yang digunakan adalah wavelet db4. Sedangkan alihragam DCT yang digunakan adalah operasi blok 4x4, yang diharapkan dapat mengurangi beban komputasi. Pengujian menunjukkan bahwa kedua algoritma watermarking secara umum tahan terhadap pemberian derau, operasi geometris citra dan operasi-operasi pengolahan citra. Algoritma watermarking yang dikembangkan kurang bertahan terhadap serangan-serangan tapis lolos-bawah dan tapis median, namun mempunyai unjuk kerja yang sangat baik terhadap serangan tapis lolos-atas. Kata Kunci: watermarking citra, wavelet, Discrete Cosine Transform (DCT), Human Visual System (HVS)


Author(s):  
Hsien-Chu Wu ◽  
Hei-Chuan Lin

In recent years, services on the Internet have greatly improved and are more reliable than before. However, the easy downloads and duplications on the Internet have created a rush of illicit reproductions. Undoubtedly, the rights of ownership are violated and vulnerable to the predators that stalk the Internet. Therefore, protection against these illegal acts has become a mind-boggling issue. Previously, artists and publishers painstakingly signed or marked their products to prevent illegal use. However with the invention of digital products, protecting rightful ownership has become difficult. Currently, there are two schemes to protect data on the Internet. The first scheme is the traditional cryptography where the important data or secret is to be encrypted by a special process before being transmitted on the Internet. This scheme requires much computational process and time to encrypt or decrypt. On the other hand, the second scheme is steganography where the important message or secret is hidden in the digital media. The hidden data is not perceptible by the human visual system (HVS). The digital watermarking technique is an application of steganography (Chang, Huang, & Chen, 2000; Chen, Chang, & Huang 2001). In order to safeguard copyrights and rightful ownerships, a representative logo or watermark could be hidden in the image or media that is to be protected. The hidden data can be recovered and used as proof of rightful ownership. The watermarking schemes can be grouped into three kinds, largely, dependent on its application. They use the fragile watermark, semi-fragile watermark, and robust watermark, respectively (Fabien, Ross, & Markus, 1999). Fragile watermarks are easily corrupted when the watermarked image is compressed or tampered with. Semi-fragile watermarks can sustain attacks from normal image processing, but are not robust against malicious tampering. Fragile and semi-fragile watermarks are restricted in its use for image authentication and integrity attestation (Fridrich,2002; Fridrich, Memon, & Goljan, 2000). For the robust watermarking, it is always applied in ownership verification and copyright protection (Fridrich, Baldoza, & Simard, 1998; Huang, Wang, & Pan, 2002; Lu, Xu, & Sun, 2005; Solanki, Jacobsoen, Madhow, Manjunath, & Chandrasekaran, 2004). Some basic conditions must be followed: (1) Invisibility: the watermarked image must look similar to its original and any difference invisible to the human visual system. (2) Undetectable: the watermark embedded in the image must not be easily detectable by computing processes or statistical methods. (3) Safety: watermark is encrypted and if accessed by a hacker; cannot be removed or tampered with. (4) Robustness: the watermark is able to withstand normal and/or illegal manipulations, such as compression, blurring, sharpening, cropping, rotations and more. The retrieved watermark is perceptible even after these processes. (5) Independence: the watermark can be retrieved without the original image. Last but not the least, (6) Efficiency: the watermarked image should not require large storage and must also allow for a comparable-sized watermark to be hidden in the media. The proposed method is a VQ-based watermark technique that depends on the structure of a tree growth for grouping the codebook. The scheme is robust. That is, the watermark is irremovable and also can withstand normal compression process, tampering by compression or other malicious attacks. After these attacks, the watermark must be recovered with comparable perceptibility and useful in providing proof of rightful ownerships.


Author(s):  
David Zhang ◽  
Xiao-Yuan Jing ◽  
Jian Yang

This chapter provides a feature extraction approach that combines the discrete cosine transform (DCT) with LDA. The DCT-based frequency-domain analysis technique is introduced first. Then, we describe the presented discriminant DCT approach and analyze its theoretical properties. Finally, we offer detailed experimental results and a chapter summary.


Sign in / Sign up

Export Citation Format

Share Document