blind image
Recently Published Documents


TOTAL DOCUMENTS

1062
(FIVE YEARS 279)

H-INDEX

50
(FIVE YEARS 9)

2022 ◽  
Vol 15 ◽  
Author(s):  
Chenxi Feng ◽  
Long Ye ◽  
Qin Zhang

This work proposes an end-to-end cross-domain feature similarity guided deep neural network for perceptual quality assessment. Our proposed blind image quality assessment approach is based on the observation that features similarity across different domains (e.g., Semantic Recognition and Quality Prediction) is well correlated with the subjective quality annotations. Such phenomenon is validated by thoroughly analyze the intrinsic interaction between an object recognition task and a quality prediction task in terms of characteristics of the human visual system. Based on the observation, we designed an explicable and self-contained cross-domain feature similarity guided BIQA framework. Experimental results on both authentical and synthetic image quality databases demonstrate the superiority of our approach, as compared to the state-of-the-art models.


2022 ◽  
pp. 1-1
Author(s):  
Shixiang Wu ◽  
Chao Dong ◽  
Yu Qiao

2022 ◽  
Vol 355 ◽  
pp. 03005
Author(s):  
Yunhong Wang ◽  
Dan Liu

Blind image deblurring is a long-standing challenging problem to improve the sharpness of an image as a prerequisite step. Many iterative methods are widely used for the deblurring image, but care must be taken to ensure that the methods have fast convergence and accuracy solutions. To address these problems, we propose a gradient-wise step size search strategy for iterative methods to achieve robustness and accelerate the deblurring process. We further modify the conjugate gradient method with the proposed strategy to solve the bling image deblurring problem. The gradient-wise step size aims to update gradient for each pixel individually, instead of updating step size by the fixed factor. The modified conjugate gradient method improves the convergence performance computation speed with a gradient-wise step size. Experimental results show that our method effectively estimates the sharp image for both motion blur images and defocused images. The results of synthetic datasets and natural images are better than what is achieved with other state-of-the-art blind image deblurring methods.


2021 ◽  
Vol 55 ◽  
pp. 44-53
Author(s):  
Misak Shoyan ◽  
◽  
Robert Hakobyan ◽  
Mekhak Shoyan ◽  

In this paper, we present deep learning-based blind image deblurring methods for estimating and removing a non-uniform motion blur from a single blurry image. We propose two fully convolutional neural networks (CNN) for solving the problem. The networks are trained end-to-end to reconstruct the latent sharp image directly from the given single blurry image without estimating and making any assumptions on the blur kernel, its uniformity, and noise. We demonstrate the performance of the proposed models and show that our approaches can effectively estimate and remove complex non-uniform motion blur from a single blurry image.


Sign in / Sign up

Export Citation Format

Share Document