Simulink Implementation of Direct Torque Control Drive for Induction Machines

2011 ◽  
Vol 367 ◽  
pp. 89-96
Author(s):  
U. Zangina ◽  
H.N. Yahaya ◽  
M. Aminu ◽  
Z.O. Niyi

Direct Torque Control (DTC) has emerged over the last two decades as a suitable alternative to the well-known Field Oriented Control (FOC) or vector control technique for electric drives mainly due to its simple control scheme, low computational time and reduced parameter sensitivity. In this paper, speed control of an induction machine based on DTC strategy has been developed and a comprehensive study is presented. The performance of the control method has been demonstrated by simulations using the Matlab/Simulink software package. Several numerical simulations have been carried out in steady state and transient operations.

2021 ◽  
Vol 34 (02) ◽  
pp. 698-709
Author(s):  
Mehdi Ahmadi Taleshian ◽  
Mahmood Ghanbari ◽  
Seyed Mehdi Rakhtala

In this paper, a novel hybrid Direct Torque Control (DTC) strategy based on predictive control with optimization of the Proportional-Integral (PI) controller to improve overall performances of Three-Phase Induction Machine (TPIM) drives is proposed. The presented control technique has contained merits of the DTC method such as fast dynamic response, simple structure, less dependence to machine parameters and merits of vector control method such as high accuracy. Furthermore, a hybrid DTC method with optimal voltage vectors is presented.  In the proposed control system, Genetic Algorithm (GA) is employed to obtain optimal values of the PI controller parameters. Finally, simulation results under the presented control strategy showed good performances of this method in comparison with DTC and vector control techniques.


Author(s):  
Fayçal Mehedi ◽  
Rachid Taleb ◽  
Abdelkadir Belhadj Djilali ◽  
Adil Yahdou

<span>This article presents an improved Direct Torque Control (DTC) technique with space vector modulation (SVM) for a five-phase permanent magnet synchronous motor (PMSM) using a sliding mode speed control (SMC).The proposed control scheme of the five-phase PMSM combines the advantages of SMC control and the SVM algorithm. The SMC method insensitive to uncertainties, in particular external disturbances and parameter variations. In this paper, the SMC controller is used to control the rotor speed of the five-phase PMSM based on DTC-SVM. The rotor speed response, torque and stator flux are determined and compared with traditional control method. The simulations results confirm the validity and effectiveness of the proposed control technique in terms of performance and robustness against machine parameter variations (inertia variation). The efficiency of the proposed method applied on the five-phase PMSM is verified by the MATLAB/Simulink.</span>


Author(s):  
Auzani Jidin ◽  
New Lai Sim ◽  
Tole Sutikno

A control strategy for overmodulation operation of direct torque control hysteresis based in induction machine is proposed. The strategy is to extend the constant torque region as well as to improve the torque capability. The proposed overmodulation strategy is different to SVM based system where the reference stator voltage is available. In order for DTC hysteresis based system to be able to achieve that, several modifications have been applied so that the proposed overmodulation can be achieved by gradually transforming the PWM voltage waveform to six-step mode. Simulated results were provided to demonstrate the effectiveness of the strategy.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 820 ◽  
Author(s):  
Ibrahim Mohd Alsofyani ◽  
Kyo-Beum Lee

Constant-frequency torque regulator–based direct torque control (CFTR-DTC) provides an attractive and powerful control strategy for induction and permanent-magnet motors. However, this scheme has two major issues: A sector-flux droop at low speed and poor torque dynamic performance. To improve the performance of this control method, interleaving triangular carriers are used to replace the single carrier in the CFTR controller to increase the duty voltage cycles and reduce the flux droop. However, this method causes an increase in the motor torque ripple. Hence, in this work, different discrete steps when generating the interleaving carriers in CFTR-DTC of an induction machine are compared. The comparison involves the investigation of the torque dynamic performance and torque and stator flux ripples. The effectiveness of the proposed CFTR-DTC with various discrete interleaving-carriers is validated through simulation and experimental results.


Sign in / Sign up

Export Citation Format

Share Document