Baseline Correction of Digital Strong-Motion Data-Examples from the 2008 Wenchuan, China, Earthquake

2011 ◽  
Vol 378-379 ◽  
pp. 247-250 ◽  
Author(s):  
Heng Li ◽  
Dun Wang ◽  
Yong Jian Cai ◽  
Jian Chao Wu ◽  
Gang Liu

This paper analyzes key noises within digital strong-motion acceleration recording that can result in baseline offset, and according to their specific position provide a baseline correction scheme for preserving the long-period ground motion. This correction method is then applied to the digital acceleration records from the 2008 Wenchuan earthquake, and also, when compared with GPS data (including some high frequency of 1Hz GPS data), it is shown that this method can well restore displacement of ground motion, including permanent displacement which is the main concern of seismologists. Furthermore, compared with other methods that aim to restore the ground displacement, it has much greater stability.

2003 ◽  
Author(s):  
Chikahiro Minowa

In this paper, a new method of baseline correction on strong motion acceleration records is presented and the fundamental concept for baseline corrections on the earthquake strong motions is described. Considering the filtering effect, the earthquakes ground motion displacements of 1995 JMA KOBE, 1999 Kocaeli YPT and 1999 Chi-Chi TCU068 are discussed. Also, the linear sloshing responses of large liquid tanks subjected to these motions were discussed. Since liquid storage tanks show the low frequency (long period) sloshing characteristics and the strong motion characteristics of 1999 Kocaeli and Chi-Chi earthquakes are also low frequencies and large permanent displacements, the sloshing responses in large liquid tanks, especially in long natural periods, were significantly affected by the low frequency motions (large permanent displacements) of these devastating earthquakes. It is very important to use suitable ground motion characterized low frequency content for earthquake resistant design of liquid storage tanks. The baseline correction method presented in the paper may be adequately used to correct strong motion records for large liquid storage design.


Author(s):  
Chikahiro Minowa ◽  
Nobuyoshi Yamaguchi ◽  
Toshio Chiba

Observation system of the seismic wave has greatly progressed and many accelerometers have been set all over Japan. Furthermore, the data processing procedure was developed and the reasonable permanent displacement and the displacement wave were going to be obtained from the measured acceleration data. The baseline correction method was adopted as a data processing procedure. To estimate the adaptability of the baseline correction method, the permanent displacements and displacement wave of major records in 2003 Off Tokachi Earthquake were calculated. The displacements were compared with the data of JAPAN Geographical Survey Institute and Port and Harbor Research Institute. These data were fairly similar to each other. Additionally, sloshing response of the fired large liquid storage tank in Tomakomai was calculated using these data. The baseline correction method presented here can be used successfully to correct strong motion records and present the displacement data for the seismic design and the vibration test.


2014 ◽  
Vol 580-583 ◽  
pp. 1533-1537
Author(s):  
Bao Feng Zhou ◽  
Ting Su Song ◽  
Rui Zhi Wen ◽  
Li Li Xie

Permanent displacement identification is one of key topics in near-fault ground-motion research. A new method based on Hermit interpolation and flatness technique is proposed to determine permanent displacements, since the Iwan law is not applicable in Mw9.0 Tohoku earthquake permanent displacement recognition. The method is then tested by coseismic displacements resulted from GPS station nearby. Results show that: the causes for strong motion record baseline drift are very complex so that Iwan method is not suitable for permanent displacements identification in the Mw9.0 Tohoku Earthquake, while the new baseline correction method combining Hermit interpolation and flatness technique is suitable for permanent displacement analysis of near-fault ground motion in 2011 Mw9.0 Tohoku Earthquake.


2020 ◽  
Author(s):  
Reza Dokht Dolatabadi Esfahani ◽  
Kristin Vogel ◽  
Fabrice Cotton ◽  
Matthias Ohrnberger ◽  
Frank Scherbaum ◽  
...  

<p>For years, engineering seismologists aim to reduce the epistemic uncertainty related to ground motion prediction. Assuming that simple models with few variables are not sufficient to describe the complex phenomena, there is a trend in present-day science to increase complexity of ground motion models. Therefore, some of the most recent ground motion prediction equations use more than 20 variables to improve the predictive power of the model. However, the legitimate question to ask is whether the inclusion of additional variables leads to an improved predictive power of the model. In other words, what is the smallest number of predictive variables needed to reconstruct the distribution of ground motion induced shaking observed in data? In this study, by taking advantage of the exponential growth of ground motion data and new machine learning methods, we present a data-driven approach to derive the dimensionality of ground motion data in the Fourier amplitude spectrum (FAS) metric. We apply an autoencoder architecture, which is commonly used for mapping high dimensional data to a lower dimensional space (bottleneck) and search for the lowest dimensionality (minimum number of nodes in the bottleneck) required to reconstruct the FAS input data. The approach is tested on synthetic ground motion data with known dimensionality (2D and 4D) and finally applied to the FAS of recorded ground motion data. A simple autoencoder with variable nodes in the bottleneck is used to explore the dimensionality of the ground motion data. We use the relation between the total residual of the network with the number of codes in the bottleneck as an indicator of dimensionality. Its numerical value is estimated based on the reduction of residuals by increasing the number of codes in the bottleneck layer. In addition, we use the low dimensional manifold of the ground motion data to predict the ground motion shaking for a given scenario. The residual analyses between observed and reconstructed data and observed and predicted data are used to validate the training and prediction steps. We applied the method on different scenarios in two synthetic data sets which are simulated by a stochastic simulation method and secondly the Pan-European engineering strong motion data (EMS) to show the performance of the proposed method. The results show that the statistical properties of ground motion data can be captured by using a limited number of three to five parameters. Especially for low frequency data the most dominant features are already captured by two parameters (codes), which roughly correspond to magnitude and distance. For higher frequencies additional parameters, e.g. corresponding to stress drop and kappa, become more relevant. The standard deviation of the residuals can be reduced to its lower bound in comparison with the standard deviations of conventional methods. Finally, we use a two-dimensional manifold to predict the FAS for given magnitude and distance values.</p>


2004 ◽  
Vol 56 (3) ◽  
pp. 317-322 ◽  
Author(s):  
Ryou Honda ◽  
Shin Aoi ◽  
Nobuyuki Morikawa ◽  
Haruko Sekiguchi ◽  
Takashi Kunugi ◽  
...  

2021 ◽  
Author(s):  
Fatma Sevil Malcıoğlu ◽  
Hakan Süleyman ◽  
Eser Çaktı

Abstract An MW 4.5 earthquake took place on September 24, 2019 in the Marmara Sea. Two days after, on September 26, 2019, Marmara region was rattled by an MW5.7 earthquake. With the intention of compiling an ample strong ground motion data set of recordings, we have utilized the stations of Istanbul Earthquake Rapid Response and Early Warning System operated by the Department of Earthquake Engineering of Boğaziçi University and of the National Strong Motion Network operated by AFAD. All together 438 individual records are used to calculate the source parameters of events; namely, corner frequency, radius, rupture area, average source dislocation, source duration and stress drop. Some of these parameters are compared with empirical relationships and discussed extensively. Duration characteristics are analyzed in two steps; first, by making use of the time difference between P-wave and S-wave onsets and then, by considering S-wave durations and significant durations. It is observed that they yield similar trends with global models. PGA, PGV and SA values are compared with three commonly used ground motion prediction models. At distances closer than about 60 km observed intensity measures mostly conform with the GMPE predictions. Beyond 60 km their attenuation is clearly faster than those of GMPEs. Frequency-dependent Q models are developed for both events. Their consistency with existing regional models are confirmed.


1991 ◽  
Vol 81 (5) ◽  
pp. 1540-1572 ◽  
Author(s):  
David J. Wald ◽  
Donald V. Helmberger ◽  
Thomas H. Heaton

Abstract We have used 24 broadband teleseismic and 48 components of local strong-motion velocity records of the 1989 Loma Prieta earthquake in a formal inversion to determine the temporal and spatial distribution of slip. Separate inversions of the teleseismic data (periods of 3 to 30 sec) or strong-motion data (periods of 1 to 5 sec) result in similar models. The data require bilateral rupture with relatively little slip in the region directly updip from the hypocenter. Slip is concentrated in two patches: one centered 6 km northwest of the hypocenter at a depth of 12 km and with a maximum slip of 350 cm, and the other centered about 5 km southeast of the hypocenter at a depth of 16 km and with a maximum slip of 460 cm. The bilateral nature of the rupture results in large amplitude ground motions at sites located along the fault strike, both to the northwest and the southeast. However, the northwestern patch has a larger moment and overall stress drop and is, consequently, the source of the largest ground motion velocities, consistent with the observed recordings. This bilateral rupture also produces relatively modest ground motion amplitudes directly updip from the hypocenter, which is in agreement with the velocity ground motions observed at Corralitos. There is clear evidence of a foreshock (magnitude between 3.5 and 5.0) or a slow rupture nucleation about 2 sec before the main part of the rupture; the origin time implied by strong-motion trigger times is systematically 2 sec later than the time predicted from the high-gain regional network data. The seismic moment obtained from either of the separate data sets or both sets combined is about 3.0 × 1026 dyne-cm and the potency is 0.95 km3.


Sign in / Sign up

Export Citation Format

Share Document