Round-Guard System Based on the Vibration Cable Transducer

2011 ◽  
Vol 383-390 ◽  
pp. 1891-1894
Author(s):  
Xiang Rong Sun ◽  
Hong Liang Ma ◽  
Xiao Hua Du

Adopting a new kind of transducer technology vibration cable technology, can round-guard in large region without bodyguard whole day, and using display and warning on the end equipments may judge abnormal conditions occurred in what time and in what place. The system makes use of quadratic and own source filter, suppress the disorder waves induced in transducer, install two-rank amplifier which kernel being operation amplifier, especially for micro-vibration originating undercut can judge illegal invader, and can judge the invaders are human or heavy equipment according to vibration intensities.

2010 ◽  
Vol 130 (5) ◽  
pp. 844-851 ◽  
Author(s):  
Yosuke Kurihara ◽  
Kosuke Masuyama ◽  
Testuo Nakamura ◽  
Takeshi Bamba ◽  
Kajiro Watanabe

2004 ◽  
Author(s):  
R. E. Miller ◽  
N. T. Lowe ◽  
R. Thompson
Keyword(s):  

2021 ◽  
pp. 107754632199731
Author(s):  
He Zhu ◽  
Shuai He ◽  
Zhenbang Xu ◽  
XiaoMing Wang ◽  
Chao Qin ◽  
...  

In this article, a six-degree-of-freedom (6-DOF) micro-vibration platform (6-MVP) based on the Gough–Stewart configuration is designed to reproduce the 6-DOF micro-vibration that occurs at the installation surfaces of sensitive space-based instruments such as large space optical loads and laser communications equipment. The platform’s dynamic model is simplified because of the small displacement characteristics of micro-vibrations. By considering the multifrequency line spectrum characteristics of micro-vibrations and the parameter uncertainties, an iterative feedback control strategy based on a frequency response model is designed, and the effectiveness of the proposed control strategy is verified by performing integrated simulations. Finally, micro-vibration experiments are performed with a 10 kg load on the platform. The results of these micro-vibration experiments show that after several iterations, the amplitude control errors are less than 3% and the phase control errors are less than 1°. The control strategy presented in this article offers the advantages of a simple algorithm and high precision and it can also be used to control other similar micro-vibration platforms.


2021 ◽  
Vol 11 (10) ◽  
pp. 4342
Author(s):  
Yeanjae Kim ◽  
Jieun Baek ◽  
Yosoon Choi

A smart helmet-based wearable personnel proximity warning system was developed to prevent collisions between equipment and pedestrians in mines. The smart helmet worn by pedestrians receives signals transmitted by Bluetooth beacons attached to heavy equipment, light vehicles, or dangerous zones, and provides visual LED warnings to the pedestrians and operators simultaneously. A performance test of the proposed system was conducted in an underground limestone mine. It was confirmed that as the transmission power of the Bluetooth beacon increased, the Bluetooth low energy (BLE) signal detection distance of the system also increased. The average BLE signal detection distance was at least 10 m, regardless of the facing angle between the smart helmet and Bluetooth beacon. The subjective workload for the smartphone-, smart glasses-, and smart helmet-based proximity warning system (PWS) was evaluated using the National Aeronautics and Space Administration task load index. All six workload parameters were the lowest when using the smart helmet-based PWS. The smart helmet-based PWS can provide visual proximity warning alerts to both the equipment operator and the pedestrian, and it can be expanded to provide worker health monitoring and hazard awareness functions by adding sensors to the Arduino board.


Sign in / Sign up

Export Citation Format

Share Document