Research on the Mechanical Properties for Medical Stainless Steel

2011 ◽  
Vol 383-390 ◽  
pp. 3976-3979
Author(s):  
Ming Wen ◽  
Wei Li ◽  
Xiao Ming Cao

The stainless steel is more and more applications to the medical field; the most is the austenitic stainless steel. In this paper, 00Cr18Ni14Mo3 mechanical properties of austenitic stainless steel screw, compared to the solution of the former and the sample microstructure after solution treatment, energy spectrum and the torque angle reverse faults, compared to solution treatment found that mechanical properties of the samples after meet the standard can be applied to practice.

2012 ◽  
Vol 433-440 ◽  
pp. 100-103
Author(s):  
Ming Wen ◽  
Wei Li ◽  
Xiao Ming Cao

The stainless steels is more and more applications to the medical field, the most is the austenitic stainless steel. In this paper, 00Cr18Ni14Mo3 mechanical properties of austenitic stainless steel screw, compared to the solution of the former and the sample microstructure after solution treatment, energy spectrum and the torque angle reverse faults, compared to solution treatment found that mechanical properties of the samples after meet the standard can be applied to practice


2015 ◽  
Vol 816 ◽  
pp. 255-261
Author(s):  
Na Yun Jiang ◽  
Fu Shun Liu

The solution treatment (ST) and the the second phase morphology changing duing the aging precipitation process of 0Cr21Ni6Mn9N austenitic stainless steel were investigated using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) with EDS and transmission electron microscope (TEM). The results showed that the precipitation phase was Cr2N which initially nucleated along austenitic grain boundaries and then grew towards into the inner grains in strip morphology. Also, with the longer aging time the proportion of Cr2N increased. The mechanical properties of alloys with and without the presence of the precipitation Cr2N were also studied. It was observed that due to the exiting of the precipitation Cr2N, the strength of 2169N stainless steel reduced during a certain range of aging time, and then improved when the aging time reached to 48h, while the elongation decreased thoroughly.


2019 ◽  
Vol 969 ◽  
pp. 508-516 ◽  
Author(s):  
Rahul Singh ◽  
Surya Deo Yadav ◽  
Nikhil Malviya ◽  
Sunkulp Goel ◽  
R. Jayaganthan ◽  
...  

The present work deals with plastic deformation of 316L austenitic stainless steel (ASS) using room temperature rolling process. After solution treatment (annealing) as-received 316L ASS has been rolled for up to 90% of thickness reduction. To investigate the effect of processing on mechanical properties microstructural study, tensile and hardness tests have been conducted. The ultimate tensile strength has been improved from 767 MPa (before deformation) to 1420 MPa (after 90% deformation), and hardness value has been increased from 208 VHN (before deformation) to 449 VHN (after 90% reduction). Magnetic measurements and XRD characterization have been performed to confirm the formation of martensitic phase. Finite element analysis have also been simulated employing DEFORM-3D software to get the insight about deformation behavior. Keywords: Room temperature rolling, Finite Element Analysis, Mechanical properties, Austenitic stainless steel.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


Alloy Digest ◽  
1999 ◽  
Vol 48 (9) ◽  

Abstract ALZ 305 is an austenitic stainless steel with excellent formability and good corrosion resistance, toughness, and mechanical properties. The higher amount of nickel in this grade enables high deep-drawing deformation without intermediate annealing. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-762. Producer or source: ALZ nv.


Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Alloy Digest ◽  
2001 ◽  
Vol 50 (4) ◽  

Abstract ALZ 321 is an austenitic stainless steel with good cold formability, corrosion resistance, toughness, and mechanical properties. The addition of titanium improves the resistance to intergranular corrosion in welds and slower cooling sections. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, and machining. Filing Code: SS-821. Producer or source: ALZ nv.


Sign in / Sign up

Export Citation Format

Share Document