Magnetic Assisted Roller Burnishing and Deburring of Flat Metal Surfaces

2012 ◽  
Vol 472-475 ◽  
pp. 908-911 ◽  
Author(s):  
János Kodácsy ◽  
János Liska

Basically, the Magnetic Assisted (MA) processes of the surface finishing can be divided into two groups: processes based on abrasion and plastic deformation. In this paper the authors present the results of experimental and developing work regarding the Magnetic Assisted Roller Burnishing (MARB) process that operates by plastic deformation and the strain hardening effect. Using Finite Element Method (FEM) modelling software system was prepared to demonstrate the experimental results.

2019 ◽  
Vol 11 (1) ◽  
pp. 60-70
Author(s):  
Javad Tashakori ◽  
Sara Ansari ◽  
Javad Razzaghi

Purpose During severe earthquakes, the inelastic energy dissipation of eccentrically braced frame system depends on shear links performance. A finite element model can predict links behavior appropriately if the factors causing large discrepancies are recognized and modified. The paper aims to discuss this issue. Design/methodology/approach In order to achieve this, the present paper discusses the cyclic response of five types of shear links constructed of various steel grades that ranged from 100 to 485 MPa yield strength. Finite element models are verified by experimental results. As these links have substantial differences in strain hardening of steel materials, different amplitudes of material stress‒strain curve loops are used to specify the level of strain hardening in finite element models. Findings The solid and shell elements in ABAQUS element factory can predict local buckling perfectly, and the computation cost of the former is significantly more than the latter. However, one of the solid elements can predict plastic deformation accurately if no local buckling emerges. The axial constraint of test setup equipment can cause excessive plastic deformation in comparison to the link plastic rotation capacity. Furthermore, some shear links with middle stiffeners can reach inaccurate high plastic rotations due to lack of defining fracture criteria in finite element models. Originality/value In this study, some resources of discrepancies between experimental results and finite element models are mentioned to ensure the reliable use of finite element models.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Author(s):  
H Jafarzadeh ◽  
K Abrinia

The microstructure evolution during recently developed severe plastic deformation method named repetitive tube expansion and shrinking of commercially pure AA1050 aluminum tubes has been studied in this paper. The behavior of the material under repetitive tube expansion and shrinking including grain size and dislocation density was simulated using the finite element method. The continuous dynamic recrystallization of AA1050 during severe plastic deformation was considered as the main grain refinement mechanism in micromechanical constitutive model. Also, the flow stress of material in macroscopic scale is related to microstructure quantities. This is in contrast to the previous approaches in finite element method simulations of severe plastic deformation methods where the microstructure parameters such as grain size were not considered at all. The grain size and dislocation density data were obtained during the simulation of the first and second half-cycles of repetitive tube expansion and shrinking, and good agreement with experimental data was observed. The finite element method simulated grain refinement behavior is consistent with the experimentally obtained results, where the rapid decrease of the grain size occurred during the first half-cycle and slowed down from the second half-cycle onwards. Calculations indicated a uniform distribution of grain size and dislocation density along the tube length but a non-uniform distribution along the tube thickness. The distribution characteristics of grain size, dislocation density, hardness, and effective plastic strain were consistent with each other.


1986 ◽  
Vol 71 ◽  
Author(s):  
I. Suni ◽  
M. Finetti ◽  
K. Grahn

AbstractA computer model based on the finite element method has been applied to evaluate the effect of the parasitic area between contact and diffusion edges on end resistance measurements in four terminal Kelvin resistor structures. The model is then applied to Al/Ti/n+ Si contacts and a value of contact resistivity of Qc = 1.8×10−7.Ωcm2 is derived. For comparison, the use of a self-aligned structure to avoid parasitic effects is presented and the first experimental results obtained on Al/Ti/n+Si and Al/CoSi2/n+Si contacts are shown and discussed.


In this paper, SiCp /Al2O3 composites were fabricated through directed metal oxidation process. Experimental results of these composites validated or compared with Finite Element Method (FEM). Finite Element has become one in all the foremost necessary tools offered to an engineer. The finite part methodology is employed to resolve advanced analysis issues. In this paper, Finite Element Method based ANSYS software is used to FEM model to determine mechanical properties of SiC reinforced Al2O3 matrix composite by changing volume fractions of SiC. The comparison of experimental results with Finite element analysis provides detailed information about the results of these comparisons. The FA was competent of predict the information for several scenario quite fine


Author(s):  
Xinghui Han ◽  
Qiu Jin ◽  
Lin Hua

This study aims at exploring the potentialities of cold orbital forming in forming complex sheet metal. Aiming at a complex mobile phone shell component of aluminum alloy, two technical schemes for cold orbital forming are first presented. Then, the optimized one, i.e., the more complex inner surface of mobile phone shell is arranged to be formed by the rocking punch with a complex motion, is determined by analyzing the nonuniform plastic deformation laws and punch filling behaviors. On the basis of the optimized technical scheme, the blank geometry in cold orbital forming of mobile phone shell is also optimized based on the forming status of the most difficult forming zone. The consistent finite element (FE) simulated and experimental results indicate that under the optimized technical scheme, not only the bosses in the mobile phone shell are fully formed but also the obtained flow lines are reasonable, which proves that the technical scheme presented in this study is feasible and cold orbital forming exhibits huge potentialities in forming complex sheet metal.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3848
Author(s):  
Radosław Kiciński ◽  
Andrzej Kubit

The article presents the characteristics of 1.3964 steel and the results of firing a 7.62 mm projectile with a steel core. A simplified Johnson–Cook material model for steel and projectile was used. Then, a FEM (finite element method) simulation was prepared to calibrate the material constants and boundary conditions necessary to be used in simulations of the entire hull model. It was checked how projectile modeling affects the FEM calculation results. After obtaining the simulation results consistent with the experimental results, using the model of a modern minehunter, the resistance of the ship’s hull to penetration by a small-caliber projectile was tested.


2014 ◽  
Vol 989-994 ◽  
pp. 352-355
Author(s):  
C.L. Wu ◽  
Z.R. Wang ◽  
Wen Zhang

Formation of chip is a typical severe plastic deformation progress in machining which is only single deformation stage. The rake angle of tool is governing parameter to create large strain imposed in the chip. Effect of rake angle and deformation times on effective strain, mean strain, strain variety and strain rate imposed in the chip are researched respectively. The result of simulation have shown that the chip with large strain and better uniform of strain along the longitudinal section of chip can be produced with negative rake angle at some lower cutting velocity by multi-deformations in large strain machining.


Sign in / Sign up

Export Citation Format

Share Document