A Dynamic Data Fragmentation and Distribution Strategy for Main-Memory Database Cluster

2012 ◽  
Vol 490-495 ◽  
pp. 1231-1236 ◽  
Author(s):  
Tran Van Hung ◽  
Chuan He Huang

MMDB cluster system is a memory optimized relation database that implements on cluster computing platform, provides applications with extremely fast response time and very high throughput as required by many applications in a wide range of industries. Here, a new dynamic fragment allocation algorithm (DFAPR) in Partially Replicated allocation scenario is proposed. This algorithm reallocates data with respect to changing data access pattern for each fragment in which data is maintained in current site, migrated or created new replicas on remote sites depend on accessing frequency and average response time. At last, the simulation results show that the DFAPR is suitable for MMDB cluster because it provides a better response time and maximize the locality of processing so it could be developed parallel processing of MMDB in cluster environment.

2006 ◽  
Vol 45 ◽  
pp. 1828-1833
Author(s):  
Fabio A. Deorsola ◽  
P. Mossino ◽  
Ignazio Amato ◽  
Bruno DeBenedetti ◽  
A. Bonavita ◽  
...  

Nanostructured semiconductor metal oxides have played a central role in the gas sensing research field, because of their high sensitivity, selectivity and low response time. Among all the processes, developed for the synthesis of nanostructured metal oxides, gel combustion seems to be the most promising route due to low-cost precursors and simplicity of the process. It combines chemical gelation and combustion, involving the formation of a gel from an acqueous solution and an exothermic redox reaction, yielding to very porous and softly agglomerated nanopowders. In this work, nanostructured tin oxide, SnO2, and titanium oxide, TiO2, have been synthesized through gel combustion. Powders showed nanometric particle size and high specific surface area. The so-obtained TiO2 and SnO2 nanopowders have been used as sensitive element of resistive λ sensor and ethanol sensor respectively, realized depositing films of nanopowders dispersed in water onto alumina substrates provided with Pt contacts and heater. TiO2-based sensors showed at high temperature good response, fast response time, linearity in a wide range of O2 concentration and long-term stability. SnO2-based sensors have shown high sensitivity to low concentrations of ethanol at moderate temperature.


2021 ◽  
Vol 30 (1) ◽  
pp. 98-105
Author(s):  
Zeyad Abdullad ◽  
Shatha Al-Samarrai

A selective electrode was manufactured to determine the sulfur ions by sedimentation method in industrial waters in oil refineries of North Refineries Company, Baiji, Iraq. The linear response on a wide range of concentration (from 1.0·10–1 to 1.0·10–6M) Na2S with a Nernst response of 28.229 mv per decade, theoretical value for slope of 29.58 mv per decade, correlation factor of 0.9998, detection limit of 2.287·10–7 at 25–35°C, pH 6.0–12.0, and the best concentration of the filling solution of 10–6M with a fast response time (5–13 s). The direct method were %RSD for 0.5772– –0.7430, %RE for –0.1, 3.7 and %REC for 99.9, 103.7.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 874
Author(s):  
Soyoung Bae ◽  
Youngno Kim ◽  
Jeong Min Kim ◽  
Jung Hyun Kim

MXene, a 2D material, is used as a filler to manufacture polymer electrolytes with high ionic conductivity because of its unique sheet shape, large specific surface area and high aspect ratio. Because MXene has numerous -OH groups on its surface, it can cause dehydration and condensation reactions with poly(4-styrenesulfonic acid) (PSSA) and consequently create pathways for the conduction of cations. The movement of Grotthuss-type hydrogen ions along the cation-conduction pathway is promoted and a high ionic conductivity can be obtained. In addition, when electrolytes composed of a conventional acid or metal salt alone is applied to an electrochromic device (ECD), it does not bring out fast response time, high coloration efficiency and transmittance contrast simultaneously. Therefore, dual-cation electrolytes are designed for high-performance ECDs. Bis(trifluoromethylsulfonyl)amine lithium salt (LiTFSI) was used as a source of lithium ions and PSSA crosslinked with MXene was used as a source of protons. Dual-Cation electrolytes crosslinked with MXene was applied to an indium tin oxide-free, all-solution-processable ECD. The effect of applying the electrolyte to the device was verified in terms of response time, coloration efficiency and transmittance contrast. The ECD with a size of 5 × 5 cm2 showed a high transmittance contrast of 66.7%, fast response time (8 s/15 s) and high coloration efficiency of 340.6 cm2/C.


2020 ◽  
Vol 8 (35) ◽  
pp. 12148-12154 ◽  
Author(s):  
Yifan Li ◽  
Yating Zhang ◽  
Tengteng Li ◽  
Xin Tang ◽  
Mengyao Li ◽  
...  

A novel self-powered NIR and THz PTE PD based on a (MAPbI3/PEDOT:PSS) composite with a rapid response time of 28 μs.


2012 ◽  
Vol 4 (4) ◽  
pp. 68-88
Author(s):  
Chao-Tung Yang ◽  
Wen-Feng Hsieh

This paper’s objective is to implement and evaluate a high-performance computing environment by clustering idle PCs (personal computers) with diskless slave nodes on campuses to obtain the effectiveness of the largest computer potency. Two sets of Cluster platforms, BCCD and DRBL, are used to compare computing performance. It’s to prove that DRBL has better performance than BCCD in this experiment. Originally, DRBL was created to facilitate instructions for a Free Software Teaching platform. In order to achieve the purpose, DRBL is applied to the computer classroom with 32 PCs so to enable PCs to be switched manually or automatically among different OS (operating systems). The bioinformatics program, mpiBLAST, is executed smoothly in the Cluster architecture as well. From management’s view, the state of each Computation Node in Clusters is monitored by “Ganglia”, an existing Open Source. The authors gather the relevant information of CPU, Memory, and Network Load for each Computation Node in every network section. Through comparing aspects of performance, including performance of Swap and different network environment, they attempted to find out the best Cluster environment in a computer classroom at the school. Finally, HPL of HPCC is used to demonstrate cluster performance.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2084 ◽  
Author(s):  
Xiuru Xu ◽  
Wei Wang ◽  
Bolun Sun ◽  
Xue Zhang ◽  
Rui Zhao ◽  
...  

In this work poly(3,4-ethylenedioxythiophene) (PEDOT) coated SnO2-Fe2O3 continuous nanotubes with a uniform core–shell structure have been demonstrated for rapid sensitive detection of iodide ions. The SnO2-Fe2O3 nanotubes were firstly fabricated via an electrospinning technique and following calcination process. An in situ polymerization approach was then performed to coat a uniform PEDOT shell on the surface of as-prepared SnO2-Fe2O3 nanotubes by vapor phase polymerization, using Fe2O3 on the surface of nanotubes as an oxidant in an acidic condition. The resultant PEDOT@SnO2-Fe2O3 core-shell nanotubes exhibit a fast response time (~4 s) toward iodide ion detection and a linear current response ranging from 10 to 100 μM, with a detection limit of 1.5 μM and sensitivity of 70 μA/mM/cm2. The facile fabrication process and high sensing performance of this study can promote a wide range of potential applications in human health monitoring and biosensing systems.


2006 ◽  
Vol 453 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Sebastian Gauza ◽  
Chien-Hui Wen ◽  
Yang Zhao ◽  
Shin-Tson Wu ◽  
Anna Ziółek ◽  
...  

2016 ◽  
Vol 7 ◽  
pp. 1492-1500 ◽  
Author(s):  
Ionel Stavarache ◽  
Valentin Adrian Maraloiu ◽  
Petronela Prepelita ◽  
Gheorghe Iordache

Obtaining high-quality materials, based on nanocrystals, at low temperatures is one of the current challenges for opening new paths in improving and developing functional devices in nanoscale electronics and optoelectronics. Here we report a detailed investigation of the optimization of parameters for the in situ synthesis of thin films with high Ge content (50 %) into SiO2. Crystalline Ge nanoparticles were directly formed during co-deposition of SiO2 and Ge on substrates at 300, 400 and 500 °C. Using this approach, effects related to Ge–Ge spacing are emphasized through a significant improvement of the spatial distribution of the Ge nanoparticles and by avoiding multi-step fabrication processes or Ge loss. The influence of the preparation conditions on structural, electrical and optical properties of the fabricated nanostructures was studied by X-ray diffraction, transmission electron microscopy, electrical measurements in dark or under illumination and response time investigations. Finally, we demonstrate the feasibility of the procedure by the means of an Al/n-Si/Ge:SiO2/ITO photodetector test structure. The structures, investigated at room temperature, show superior performance, high photoresponse gain, high responsivity (about 7 AW−1), fast response time (0.5 µs at 4 kHz) and great optoelectronic conversion efficiency of 900% in a wide operation bandwidth, from 450 to 1300 nm. The obtained photoresponse gain and the spectral width are attributed mainly to the high Ge content packed into a SiO2 matrix showing the direct connection between synthesis and optical properties of the tested nanostructures. Our deposition approach put in evidence the great potential of Ge nanoparticles embedded in a SiO2 matrix for hybrid integration, as they may be employed in structures and devices individually or with other materials, hence the possibility of fabricating various heterojunctions on Si, glass or flexible substrates for future development of Si-based integrated optoelectronics.


Author(s):  
Berk Gonenc ◽  
Hakan Gurocak

Surgical training is an important and recent application where haptic interfaces are used to enhance the realism of virtual training simulators. Tissue cutting with surgical scissors is a common interaction mode in the simulations. The haptic interface needs to render a wide range of tissue properties and resistance forces accurately. In this research, we developed a hybrid haptic device made of a DC servomotor and a magnetorheological (MR) brake. The motor can provide fast dynamic response and compensate for inertia and friction effects of the device. But alone, it cannot supply high force levels and the sensation of stiff interaction with hard tissues such as tendons. On the other hand, the MR-brake can provide very stiff interaction forces yet cannot reflect fast dynamics that are encountered as the virtual scissors go through the tissue. The hybrid actuator developed in this work combines the two based on a control scheme that decomposes the actuator command signal into two branches considering each actuator's capabilities. It is implemented on a compact single degree-of-freedom (DOF) interface to simulate virtual tissue cutting with three different scissor types (Mayo, Metzenbaum, Iris) and four types of rat tissue (liver, muscle, skin, tendon). Results have shown close tracking of the desired force profile in all cases. Compared to just using a DC motor, the hybrid actuator provided a wider range of forces (up to 18 N) with fast response to render quick force variations without any instability for all simulated tissue and scissor types.


Sign in / Sign up

Export Citation Format

Share Document