Finite Element Analysis of Stress for Nozzle Zone at Channel of Pressure Vessel

2012 ◽  
Vol 490-495 ◽  
pp. 2165-2168 ◽  
Author(s):  
Xiao Lv ◽  
Shi Jie Wang

With the development of petrochemical industry, the status of pressure vessel has become increasingly important, and higher requirements are introduced for the security of nozzle zone at the pressure bearing region of pressure vessel. In order to study the stress status of nozzle zone at the channel of pressure vessel, solid modeling for channel and straight pipe was performed with ANSYS software. Through finite element analysis and calculation, the stress concentration region of channel was determined and the reason was analyzed. In addition, the nozzle zones of the model before and after loading were compared. The result reveals that symmetrical stress concentration region lies at the junction of channel and pipe. The maximum stress is located at the inside of nozzle zone of channel and less than the yield stress of material.

1996 ◽  
Vol 118 (4) ◽  
pp. 429-433
Author(s):  
H. Chen ◽  
J. Jin ◽  
J. Yu

Results from finite element analysis were used to show that the stress index kσ and the nondimensionalized highly stressed hub length kh of a flat head with a round corner in a pressure vessel subjected to internal pressure are functions of three dimensionless parameters: λ ≡ h/dt, η ≡ t/d, and ρ ≡ r/t. Approximate formulas for estimating kσ and kh from λ, η, and ρ p are given. The formulas can be used for determining a suitable fillet radius for a flat head in order to reduce the fabricating cost and to keep the stress intensity at the fillet under an acceptable limit.


2011 ◽  
Vol 396-398 ◽  
pp. 1228-1231
Author(s):  
Yu Li Liu ◽  
Hai Bo Liu ◽  
Bo Wang

In this paper, the sheet with hole for the finite element analysis, the location of maximum stress and maximum stress values are obtained under different load of edge of the hole, and the finite element analysis results compared with the classic Qi Erxi answers. This coincidence is not accidental, but it just shows their correctness. Therefore, we can use Qi Erxi answer when the calculation of the hole’s edge stress concentration and the condition of the force and the boundary are simple; while the it is complex, the finite element analysis can be used.


Author(s):  
Ajay Garg ◽  
Ravi Tetambe

Abstract The elastic stress concentration factor, Kt, is critical in determining the life of machines, especially in the case of notched components experiencing high cycle fatigue. This Kt is defined as the ratio of the maximum stress (σmax) at the notch to the nominal stress (σnom) in the region away from the notch effect. For simple geometries such as, plate with a hole, calculation of Kt from either closed form solution or from making simple but valid assumptions is possible [1,2]. However, for complex machine components such data is usually not available in the literature. Using Kt values from the simple geometries may lead to either over or under estimation of the real Kt for such complex geometries. Such error can then further lead to a substandard product or a product which is overdesigned and expensive. Present paper outlines a methodology for computing reasonably accurate elastic stress concentration factor, Kt, using finite element analysis (FEA) tool. The maximum stress (σmax) is readily available from the finite element analysis. The nominal stress (σnom) near the stress concentration is however can not be directly extracted from the FEA results. A novel approach of estimating reasonably accurate σnom is presented in this paper. This approach is based on selecting the correct path at the stress concentration region, post processing the stress and the stress gradient results along that path and identifying the cut of point where stress concentration effect begins to take place. This methodology is first validated using two examples with known Kt and later applied to a real world problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiao Yu ◽  
Peng-ze Rong ◽  
Qing-jiang Pang ◽  
Xian-jun Chen ◽  
Lin Shi ◽  
...  

Objective. To evaluate the stress status of fracture site caused by femoral neck shortening and to analyze the stress of fracture site and the implants from the finite element point of view. Methods. CT scan data of hip of a normal adult female were collected. Three-dimensional reconstruction MICs and related module function simulation was used to establish the postoperative shortening model of femoral neck fracture with Pauwels   angle > 50 ° , which was treated with cannulated screws. The models were divided into four groups: normal femoral neck, shortening in 2.5 mm, shortening in 7.5 mm, and shortening in 12.5 mm. The finite element analysis software msc.nastran2012 was used, and the data of maximum stress and stress nephogram of fracture site and implants were carried out. Results. From normal femoral neck to shortening in 12.5 mm of the femoral neck, the maximum tensile stress increased gradually in the fracture site above the cannulated screws while compressive stress decreased gradually in the fracture site below the cannulated screws, and the maximum stress of the cannulated screws increased gradually with obvious stress concentration at the screw holes in the fracture site, and the peak value of stress concentration was about 179 MPa. Conclusion. The biomechanical environment of the fracture site changed by femoral neck shortening. With the increasing of femoral neck shortening, the stress of the fracture site and implants would be uneven; then, the stability of fracture site would become worse, and the possibility of implant sliding or even breakage would be increased.


Author(s):  
P. Gurubaran ◽  
M. Afendi ◽  
I. Haftirman ◽  
K. Nanthini

The fatigue performance of the rails is affected by many factors, including service conditions, loading, mechanical properties, environment factors, and manufacturing processes. In this paper, the investigation on wheel-rail to identify the initial damages caused by Rolling Contact Fatigue (RCF) cracks and the location that experienced damages is presented. UIC 54kg rail (grade 900A) was used as the model in three dimensional (3D) finite element contact analysis. The fatigue crack growth on wheel-rail was carried out by considering the Hertz contact pressure. The finite element analysis results show that maximum stress concentration zone was between the wheel-rail surface (rail inside curve gauge corner) and it is above the yield stress limit for wheel-rail steel. Fatigue crack propagation within a depth affected stress concentration region was predicted. The stress intensity factors (SIF) for mode I, mode II and mode III fracture were plotted from ANSYS simulation. Three types of fracture modes were affected the UIC54kg rail Steel to fail or develop initial failure when the crack propagation exceeds 5 mm.


Author(s):  
C. T. Watson ◽  
A. Gregg ◽  
R. Dennis ◽  
N. Leggatt ◽  
E. Kingston ◽  
...  

A programme of work was undertaken to gain an understanding of the residual stress levels in the tube penetration J-groove attachment welds in a hemispherical head of a large stainless steel clad ferritic pressure vessel. In this first part, of a two part paper, the finite element analyses that were carried out to model the centre nozzle penetration are described. Two axisymmetric residual stress finite element models were developed. One used an accurate representation of the weld bead deposition sequence and the other a bead lumping approach to model bead deposition. The results from the finite element analyses were compared with both surface and through thickness stress measurements. These measurements were taken on a mock-up weld that was representative of the actual component. The surface measurements were taken by using an incremental centre hole drilling technique (ICHD). The through thickness values were obtained from deep hole drilling (DHD) measurements. The DHD measurements were taken before and after the cladding of the mock-up. The analytical results from the two axisymmetric models showed the simpler blocked dump model approach to be reasonable in capturing the general level of stress. The finite element analysis results showed good agreement with the measurements in the radial direction, but predicted greater than the measured values in the hoop direction.


Author(s):  
Saeed Nokar ◽  
Hamid Jalali ◽  
Farideh Nozari ◽  
Mahnaz Arshad

Objectives: The success of implant treatment depends on many factors affecting the bone-implant, implant-abutment, and abutment-prosthesis interfaces. Stress distribution in bone plays a major role in success/failure of dental implants. This study aimed to assess the pattern of stress distribution in bone and abutment-implant interface under static and cyclic loadings using finite element analysis (FEA). Materials and Methods: In this study, ITI implants (4.1×12 mm) placed at the second premolar site with Synocta abutments and metal-ceramic crowns were simulated using SolidWorks 2007 and ABAQUS software. The bone-implant contact was assumed to be 100%. The abutments were tightened with 35 Ncm preload torque according to the manufacturer’s instructions. Static and cyclic loads were applied in axial (116 Ncm), lingual (18 Ncm), and mesiodistal (24 Ncm) directions. The maximum von Mises stress and strain values ​​were recorded. Results: The maximum stress concentration was at the abutment neck during both static and cyclic loadings. Also, maximum stress concentration was observed in the cortical bone. The loading stress was higher in cyclic than static loading. Conclusion: Within the limitations of this study, it can be concluded that the level of stress in single-unit implant restorations is within the tolerable range by bone.


Author(s):  
Yuqiao Zheng ◽  
Fugang Dong ◽  
Huquan Guo ◽  
Bingxi Lu ◽  
Zhengwen He

The study obtains a methodology for the bionic design of the tower for wind turbines. To verify the rationality of the biological selection, the Analytic Hierarchy Procedure (AHP) is applied to calculate the similarity between the bamboo and the tower. Creatively, a bionic bamboo tower (BBT) is presented, which is equipped with four reinforcement ribs and five flanges. Further, finite element analysis is employed to comparatively investigate the performance of the BBT and the original tower (OT) in the static and dynamic. Through the investigation, it is suggested that the maximum deformation and maximum stress can be reduced by 5.93 and 13.75% of the BBT. Moreover, this approach results in 3% and 1.1% increase respectively in the First two natural frequencies and overall stability.


2012 ◽  
Vol 490-495 ◽  
pp. 2785-2789
Author(s):  
Dong Sun ◽  
Xu Dong Yang

The milling planer bed is one of the most important foundational parts for the entire machine, sufficient stiffness is required. The posterior segment of a certain milling planer bed is regarded as the optimization object in this paper. Three-dimensional modeling method is used to calculate the exact weight of the bed and then finite element analysis is used to research the static and dynamic characteristics before and after weight-reduction. The weak link of the bed is found out and a improvement scheme is put forward ensuring lower production costs under the premise of sufficient rigidity.


Sign in / Sign up

Export Citation Format

Share Document