Simulation Study of Spiral Electrode Capacitance Sensor for Measuring Concentration of Gas-Solid Two-Phase Flow

2012 ◽  
Vol 508 ◽  
pp. 170-173
Author(s):  
Zhi Chun Wang ◽  
Wen Jing Zhang ◽  
Wen Tao Li

Gas-sold two-phase flow is a typical and complex flow form in the natural world and the industrial process. The accurate measurement of the parameters is the key problem for improving the industry control quality and promoting enterprise economic benefit. Three-dimensional finite element simulation of spiral electrodes capacitance sensor was put up by ANSYS in this paper. The results from simulation show that spiral electrode capacitance sensor has an obvious advantage. The sensor has uniform sensing filled, and the capacitance value has nothing to do with flow pattern which is only related to solid concentration change. There is good linear correlation between capacitance value and solid concentration. Relationship graph between capacitance value and solid concentration was obtained by calculated. In addition, with the FEM the qualitative analyses to the effect of each structural parameter of the capacitance transducer on its capability were made. These can provide bases and supports for optimum design of this kind of sensors. Comparing with ECT, it is a simply and easy-implemented method of concentration measurement using spiral electrode capacitance sensor.

Measurement ◽  
2014 ◽  
Vol 49 ◽  
pp. 153-163 ◽  
Author(s):  
Zhao An ◽  
Jin Ningde ◽  
Zhai Lusheng ◽  
Gao Zhongke

2017 ◽  
Vol 17 (15) ◽  
pp. 4834-4842 ◽  
Author(s):  
Seyed Milad Salehi ◽  
Hajir Karimi ◽  
Ali Akbar Dastranj ◽  
Rouhollah Moosavi

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2088
Author(s):  
Wael Ahmed ◽  
Adib Fatayerji ◽  
Ahmed Elsaftawy ◽  
Marwan Hassan ◽  
David Weaver ◽  
...  

Evaluating the two-phase flow parameters across tube bundles is crucial to the analysis of vibration excitation mechanisms. These parameters include the temporal and local variation of void fraction and phase redistribution. Understanding these two-phase parameters is essential to evaluating the stability threshold of tube bundle configurations. In this work, capacitance sensor probes were designed using finite element analysis to ensure high sensor sensitivity and optimum response. A simulation-based approach was used to calibrate and increase the accuracy of the void fraction measurement. The simulation results were used to scale the normalized capacitance and minimize the sensor uncertainty to ±5%. The sensor and required conditioning circuits were fabricated and tested for measuring the instantaneous void fraction in a horizontal triangular tube bundle array under both static and dynamic two-phase flow conditions. The static calibration of the sensor was able to reduce the uncertainty to ±3% while the sensor conditioning circuit was able to capture instantaneous void fraction signals with frequencies up to 2.5 kHz.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2657 ◽  
Author(s):  
Yongguang Tan ◽  
Shihong Yue

One of the major tasks in process industry is solid concentration (SC) estimation in solid–liquid two-phase flow in any pipeline. The γ-ray sensor provides the most used and direct measurement to SC, but it may be inaccurate due to very local measurements and inaccurate density baseline. Alternatively, under various conditions there are a tremendous amount of indirect measurements from other sensors that can be used to adjust the accuracy of SC estimation. Consequently, there is complementarity between them, and integrating direct and indirect measurements is helpful to improve the accuracy of SC estimation. In this paper, after recovering the interrelation of these measurements, we proposed a new SC estimation method according to Kalman filter fusion. Focusing on dredging engineering fields, SCs of representative flow pattern were tested. The results show that our proposed methods outperform the fused two types of measurements in real solid–liquid two-phase flow conditions. Additionally, the proposed method has potential to be applied to other fields as well as dredging engineering.


Author(s):  
William Dempster ◽  
Moftah Alshaikh

At present there are very few published works on prediction based methods to establish the forces that act on safety valves during two-phase operation. This means that the valve dynamics and resulting opening and closure are uncertain for a wide range of complex flow applications. This paper describes a study whereby a safety valve, primarily developed for the industrial refrigeration sector is investigated for a range of steady state high gas mass fraction inlet conditions, (gas mass quality 1-0.2) and the disc force characteristics measured for valve choked conditions. The highly compressible two phase flow processes are modelled using an Euler–Euler two fluid CFD approach and the results compared with the experiments. Results indicate that CFD approaches can reasonably capture the key processes but deficiencies exist due to the prediction of two phase built up backpressure in the valve. The methods and data trends are discussed to show the effectiveness of current modelling approaches.


2011 ◽  
Vol 418-420 ◽  
pp. 2006-2011
Author(s):  
Rui Zhang ◽  
Cheng Jian Sun ◽  
Yue Wang

CFD simulation and PIV test technology provide effective solution for revealing the complex flow of hydrodynamic coupling’s internal flow field. Some articles reported that the combination of CFD simulation and PIV test can be used for analyzing the internal flow field of coupling, and such analysis focuses on one-phase flow. However, most internal flow field of coupling are gas-fluid two-phase flow under the real operation conditions. In order to reflect the gas-fluid two-phase flow of coupling objectively, CFD three-dimensional numerical simulation is conducted under two typical operation conditions. In addition, modern two-dimensional PIV technology is used to test the two-phase flow. This method of combining experiments and simulation presents the characteristics of the flow field when charging ratios are different.


Author(s):  
Kathleen De Kerpel ◽  
Timothy De Keulenaer ◽  
Sven De Schampheleire ◽  
Michel De Paepe

Sign in / Sign up

Export Citation Format

Share Document