Decomposition Analyses for COD Discharges in China’s Industrial Sub-Sectors: Which is the Superior Method?

2012 ◽  
Vol 518-523 ◽  
pp. 168-177 ◽  
Author(s):  
Xun Feng Xia ◽  
Hong Jun Lei ◽  
Chang Jia Li ◽  
Bei Dou Xi

Numerous index decomposition analysis approaches have been reported in the past 30 years. However, the selection of different methods appears to be arbitrary, and little consensus has been reached on which is the superior method. Between 2001 and 2009, 10 different methods have been used to identify the factors (i.e. production effect, structural effect and intensity effect) influencing on China’s industrial wastewater pollutant (Chemical Oxygen Demand, COD) discharges. From the aspect of theoretical foundation, adaptability, ease of use, and ease of result interpretation, these methods are compared. Results show that: (1) LMDI 1 is a superior approach because of zero residual error in decomposition, no zero values problem in data set, simplicity in formula, and wide range in usage situations. (2) the average effect changes of industrial wastewater changes of COD discharges in China is 14.89 ×104 t with production effect, structural effect, and intensity effect were 72.97×104 t, -6.93×104 t and -80.94×104 t, respectively. (3) production effect was the major factor responsible for the rise of COD discharges, accounting for 45% of the total contribution. (4) structural effect contributed to the decrease of COD discharges with a small effect of 4% in total contribution. (5) intensity effect had an dominant decremental effect in COD discharges.

2012 ◽  
Vol 518-523 ◽  
pp. 2089-2098 ◽  
Author(s):  
Hong Jun Lei ◽  
Chang Jia Li ◽  
Xun Feng Xia ◽  
Bei Dou Xi

China’s industry accounts for 46.8% of the national gross domestic product (GDP) and plays an important strategic role to its economic growth, but it is also the main water pollution sources. In order to identify the relationship between the underlying driving forces and various environmental indicators, two critical industrial wastewater pollutant discharges over 2001-2009, including Chemical Oxygen Demand (COD) and ammonia nitrogen (NH4-N), were decomposed into three factors, i.e., production effect (caused by change in the scale of economic activity), structural effect (caused by change in economic structure) and intensity effect (caused by change in technological level of the sector), using a logarithmic mean Divisia index I (LMDI I) decomposition method. Results showed that: (1) the average annual effect changes of industrial wastewater changes of COD discharges in China is -2.99% with the production effect, structural effect, and intensity effect as 14.64%, -1.39%, and -16.24%, respectively. Similarly, the average effect changes of industrial wastewater changes of NH4-N discharges is -4.03% with production effect, structural effect, and intensity effect as 16.18%, -2.88%, and -17.33%, respectively. (2) production effect was the major factor responsible for the rise of COD and NH4-N discharges, accounting for 45% and 44% of the total contribution. (3) structural effect contributed to the decrease of COD and NH4-N discharges with a small effect of 4% and 8% in total contribution. (4) intensity effect had an dominant decremental effect in COD and NH4-N discharges, accounting for 50% and 48% of the total contribution; intensity effect could be further decomposed in cleaner production effect and pollution abatement effect, and cleaner production effect of COD and NH4-N accounts for 60% and 55% in pollution reduction. (5) the main contributors to incremental COD and NH4-N discharges among industrial sub-sectors were manufacture of paper and paper products, processing of food from agricultural products, manufacture of textile and so on. These sectors should be the top priorities for policy makers to reduce pollutants discharges, and the potential measures are industrial restructuring and related regulation.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5120
Author(s):  
Jiyong Park ◽  
Taeyoung Jin ◽  
Sungin Lee ◽  
Jongroul Woo

For this study, we conducted a decomposition analysis of industrial electricity consumption based on the logarithmic mean Divisia index approach. An empirical dataset consisting of 11 industrial sectors in Korea from 2000 to 2018 was used. The three-factor decomposition equation was extended to include four factors by decomposing the energy intensity effect into electrification and electricity consumption efficiency effects. The empirical results are summarized as follows: The increase in electricity consumption in the Korean industrial sector from 2000 to 2018 is mostly caused by the production effect. While the structure effect decreases electricity consumption, the intensity effect increases it. The key findings indicate that the hidden electrification effect can be confusing to researchers with regard to the intensity effect. The empirical evidence suggests that the intensity effect has a positive effect on electricity consumption induced by the electrification effect, although the efficiency effect continuously decreased electricity consumption. The decomposition results of some sectors show that electrification, rather than the production effect, contributed the most to the increase in electricity consumption. This implies that while replacing fuel with electricity has been successfully achieved in several sectors, there are still challenges regarding increasing energy efficiency and expanding clean electricity generation.


Water Policy ◽  
2014 ◽  
Vol 16 (5) ◽  
pp. 805-823 ◽  
Author(s):  
Mo Guo ◽  
Jin-nan Wang ◽  
Jun Bi

Water shortage in China is caused by the uneven distribution of water resources, a situation that can worsen given overexploitation and pollution. Chemical oxygen demand (COD) emission is considered the most important water pollutant. Using the logarithmic mean Divisia index (LMDI) method, we analyse the main driving factors of the 2001–2011 changes in China's industrial water consumption-related COD emission. The main driving factors of COD emission are classified into five effects, namely, end-of-pipe treatment, COD emission intensity, water intensity, structural effect, and scale effect. In contrast to previous studies, the current work considers water consumption by using water intensity as an index. Results show that end-of-pipe treatment, with an effect of up to 35%, was the primary factor that influenced emission reduction during the studied period. Pollution reduction policies are key drivers of promoting advancements in technologies for reducing COD emission in industrial sectors, and technical efficiency in 2001–2011.


2021 ◽  
Author(s):  
◽  
Rofhiwa Tevin Machivha

This research focuses on applying the Index Decomposition Analysis (IDA) to South Africa’s automotive industry to decompose energy consumption and further make use of regression analysis to understand how it relates to the economy. South Africa has been going through an energy crisis, which has resulted in ongoing load shedding as a way to manage this crisis. Looking at South Africa’s energy generation, it can be noted that the entire country depends on Eskom as the main supplier and of electricity, but it is unable to keep pace with the demand. The results of the research show that there exists a nexus across all segments between energy consumption and GDP; furthermore, the decomposition results show that energy consumption in some years experienced a reduction. However, it can be seen that an increase in energy consumption year on year is predominant; this then suggests that the reductions experienced were the result of a special event; hence, it can be deduced that overall energy consumption has increased slightly. The increase is as a result of the activity effect which contributed the most towards this whilst the structural effect yielded a negligible contribution. Lastly, the intensity effect contributed to the reduction in energy consumption as a result of sectoral shifts; this reduction contributed towards keeping the overall increase in energy consumption low. This study aimed to outline the differences in energy consumed during the production of different vehicle classes, citing various factors responsible for the changes in energy consumption during vehicle production, raising awareness with manufacturers on the impact industrial energy consumption has on the national energy grid and on advising medium to large manufacturers to become suppliers.


2018 ◽  
Vol 18 (8) ◽  
pp. 5905-5919 ◽  
Author(s):  
David S. McLagan ◽  
Carl P. J. Mitchell ◽  
Alexandra Steffen ◽  
Hayley Hung ◽  
Cecilia Shin ◽  
...  

Abstract. Passive air samplers (PASs) for gaseous mercury (Hg) were deployed for time periods between 1 month and 1 year at 20 sites across the globe with continuous atmospheric Hg monitoring using active Tekran instruments. The purpose was to evaluate the accuracy of the PAS vis-à-vis the industry standard active instruments and to determine a sampling rate (SR; the volume of air stripped of gaseous Hg per unit of time) that is applicable across a wide range of conditions. The sites spanned a wide range of latitudes, altitudes, meteorological conditions, and gaseous Hg concentrations. Precision, based on 378 replicated deployments performed by numerous personnel at multiple sites, is 3.6 ± 3.0 %1, confirming the PAS's excellent reproducibility and ease of use. Using a SR previously determined at a single site, gaseous Hg concentrations derived from the globally distributed PASs deviate from Tekran-based concentrations by 14.2 ± 10 %. A recalibration using the entire new data set yields a slightly higher SR of 0.1354 ± 0.016 m3 day−1. When concentrations are derived from the PAS using this revised SR the difference between concentrations from active and passive sampling is reduced to 8.8 ± 7.5 %. At the mean gaseous Hg concentration across the study sites of 1.54 ng m−3, this represents an ability to resolve concentrations to within 0.13 ng m−3. Adjusting the sampling rate to deployment specific temperatures and wind speeds does not decrease the difference in active–passive concentration further (8.7 ± 5.7 %), but reduces its variability by leading to better agreement in Hg concentrations measured at sites with very high and very low temperatures and very high wind speeds. This value (8.7 ± 5.7 %) represents a conservative assessment of the overall uncertainty of the PAS due to inherent uncertainties of the Tekran instruments. Going forward, the recalibrated SR adjusted for temperature and wind speed should be used, especially if conditions are highly variable or deviate considerably from the average of the deployments in this study (9.89 ∘C, 3.41 m s−1). Overall, the study demonstrates that the sampler is capable of recording background gaseous Hg concentrations across a wide range of environmental conditions with accuracy similar to that of industry standard active sampling instruments. Results at sites with active speciation units were inconclusive on whether the PASs take up total gaseous Hg or solely gaseous elemental Hg primarily because gaseous oxidized Hg concentrations were in a similar range as the uncertainty of the PAS.


2018 ◽  
Author(s):  
David S. McLagan ◽  
Carl P. J. Mitchell ◽  
Alexandra Steffen ◽  
Hayley Hung ◽  
Cecilia Shin ◽  
...  

Abstract. Passive air samplers (PASs) for gaseous mercury (Hg) were deployed for time periods between 1 month and 1 year at 20 sites across the globe with continuous atmospheric Hg monitoring using active Tekran instruments. The purpose was to evaluate the accuracy of the PAS vis-à-vis the industry standard active instruments and to determine a sampling rate (SR; the volume of air stripped of gaseous Hg per unit of time) that is applicable across a broad variety of conditions. The sites spanned a wide range of latitudes, altitudes, meteorological conditions, and gaseous Hg concentrations. Precision, based on 378 replicated deployments performed by numerous personnel at multiple sites, is 3.6 ± 3.0 %*, confirming the PAS's excellent reproducibility and ease-of-use. Using a SR previously determined at a single site, gaseous Hg concentrations derived from the globally distributed PASs deviate from Tekran-based concentrations by 14.2 ± 10 %. A recalibration using the entire new data set yields a slightly higher SR of 0.1354 ± 0.016 m3 day−1. When concentrations are derived from the PAS using this revised SR the difference is reduced to 8.8 ± 7.5 %. At the mean gaseous Hg concentration across the study sites of 1.54 ng m−3, this represents an ability to resolve concentrations to within 0.13 ng m−3. Adjusting the sampling rate to deployment specific temperatures and wind speeds does not decrease the difference in active–passive concentration further (8.7 ± 5.7 %), but reduces its variability by leading to better agreement in Hg concentrations measured at sites with very high and very low temperatures and very high wind speeds. This value (8.7 ± 5.7 %) represents a conservative assessment of the overall uncertainty of the PAS due to inherent uncertainties of the Tekran instruments. Going forward, the recalibrated SR adjusted for temperature and wind speed should be used, especially if conditions are highly variable or deviate considerably from the average of the deployments in this study (9.89 °C, 3.41 m s−1). Overall, the study demonstrates that the sampler is capable of recording background gaseous Hg concentrations across a wide range of environmental conditions with accuracy similar to that of industry standard active sampling instruments. Results at sites with active speciation units were inconclusive on whether the PASs take up total gaseous Hg or solely gaseous elemental Hg primarily because gaseous oxidized Hg concentrations were in a similar range as the uncertainty of the PAS.


2014 ◽  
Vol 13 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Ghasem Najafpour Darzi ◽  
Reza Katal ◽  
Hossein Zare ◽  
Seyed Omid Rastegar ◽  
Poorya Mavaddat

Author(s):  
O. Y. Balalaieva ◽  

The purpose of the article is to study the dynamics of electronic dictionaries development abroad and in Ukraine using methods of analysis of scientific sources, comparison, generalization and systematization. Electronic dictionaries have been found to be a relatively new phenomenon in the lexicographic market, evolving from machine-readable dictionaries, exact copies of paper editions to complex digital lexicographic systems with a powerful arsenal of functions over the decades. The stages of development of autonomous and online dictionaries are described. Electronic dictionaries due to the advanced search capabilities, speed, simplicity, ease of use, accessibility and compactness have gained popularity among a wide range of users. Today they are used in many spheres of human activity – scientific, educational, professional, everyday communication. However, the analysis of the current level of development of Ukrainian electronic resources indicates a shortage of electronic dictionaries both common and terminological vocabulary. The lack of electronic dictionaries is due to a number of objective problems, both practical and theoretical, that is why research in the field of domestic computer lexicography is a promising area of further research.


2019 ◽  
Vol 16 (7) ◽  
pp. 808-817 ◽  
Author(s):  
Laxmi Banjare ◽  
Sant Kumar Verma ◽  
Akhlesh Kumar Jain ◽  
Suresh Thareja

Background: In spite of the availability of various treatment approaches including surgery, radiotherapy, and hormonal therapy, the steroidal aromatase inhibitors (SAIs) play a significant role as chemotherapeutic agents for the treatment of estrogen-dependent breast cancer with the benefit of reduced risk of recurrence. However, due to greater toxicity and side effects associated with currently available anti-breast cancer agents, there is emergent requirement to develop target-specific AIs with safer anti-breast cancer profile. Methods: It is challenging task to design target-specific and less toxic SAIs, though the molecular modeling tools viz. molecular docking simulations and QSAR have been continuing for more than two decades for the fast and efficient designing of novel, selective, potent and safe molecules against various biological targets to fight the number of dreaded diseases/disorders. In order to design novel and selective SAIs, structure guided molecular docking assisted alignment dependent 3D-QSAR studies was performed on a data set comprises of 22 molecules bearing steroidal scaffold with wide range of aromatase inhibitory activity. Results: 3D-QSAR model developed using molecular weighted (MW) extent alignment approach showed good statistical quality and predictive ability when compared to model developed using moments of inertia (MI) alignment approach. Conclusion: The explored binding interactions and generated pharmacophoric features (steric and electrostatic) of steroidal molecules could be exploited for further design, direct synthesis and development of new potential safer SAIs, that can be effective to reduce the mortality and morbidity associated with breast cancer.


Author(s):  
Eun-Young Mun ◽  
Anne E. Ray

Integrative data analysis (IDA) is a promising new approach in psychological research and has been well received in the field of alcohol research. This chapter provides a larger unifying research synthesis framework for IDA. Major advantages of IDA of individual participant-level data include better and more flexible ways to examine subgroups, model complex relationships, deal with methodological and clinical heterogeneity, and examine infrequently occurring behaviors. However, between-study heterogeneity in measures, designs, and samples and systematic study-level missing data are significant barriers to IDA and, more broadly, to large-scale research synthesis. Based on the authors’ experience working on the Project INTEGRATE data set, which combined individual participant-level data from 24 independent college brief alcohol intervention studies, it is also recognized that IDA investigations require a wide range of expertise and considerable resources and that some minimum standards for reporting IDA studies may be needed to improve transparency and quality of evidence.


Sign in / Sign up

Export Citation Format

Share Document