An Introduction to Parallel Robot Mechanism

2012 ◽  
Vol 605-607 ◽  
pp. 1609-1612
Author(s):  
Zi Yun Xue

With the dual relationship between parallel mechanism and serial mechanism on the structure and performance characteristics, the emergence of parallel mechanism, expand the areas of application of the robot. In this paper, a survey on the origin, main characteristics, field of application, and theoretical research of parallel manipulators are reviewed. Finally, some important problems of the parallel manipulator are mentioned to be solved.

2011 ◽  
Vol 3 (3) ◽  
Author(s):  
Sébastien Briot ◽  
Vigen Arakelian

In the present paper, we expand information about the conditions for passing through Type 2 singular configurations of a parallel manipulator. It is shown that any parallel manipulator can cross the singular configurations via an optimal control permitting the favorable force distribution, i.e., the wrench applied on the end-effector by the legs and external efforts must be reciprocal to the twist along with the direction of the uncontrollable motion. The previous studies have proposed the optimal control conditions for the manipulators with rigid links and flexible actuated joints. The different polynomial laws have been obtained and validated for each examined case. The present study considers the conditions for passing through Type 2 singular configurations for the parallel manipulators with flexible links. By computing the inverse dynamic model of a general flexible parallel robot, the necessary conditions for passing through Type 2 singular configurations are deduced. The suggested approach is illustrated by a 5R parallel manipulator with flexible elements and joints. It is shown that a 16th order polynomial law is necessary for the optimal force generation. The obtained results are validated by numerical simulations carried out using the software ADAMS.


Author(s):  
Nathan A. Jensen ◽  
Carl A. Nelson

Abstract Underactuated parallel manipulators that achieve 6 DOF via multiple controllable degrees of freedom per leg are often pursued and reported due to their large workspaces. This benefit comes at a cost to the manipulator’s performance, however. Such manipulators must then be evaluated in order to characterize their kinematics in terms of position and motion. This paper establishes a pair of inverse kinematic solutions for a previously proposed and prototyped 3-leg, 6-DOF parallel robot. These solutions are then used to define the robot’s workspace with experimental validation and to optimize the robot’s geometry for maximum workspace volume. The linear components of the Jacobian are then defined, allowing for analysis of the manipulability of the robot. The full Jacobian is also defined, and singularities are examined throughout the workspace of the robot.


Author(s):  
Yanwen Li ◽  
Yueyue Zhang ◽  
Lumin Wang ◽  
Zhen Huang

This paper investigates a novel 4-DOF 3-RRUR parallel manipulator, the number and the characteristics of its degrees of freedom are determined firstly, the rational input plan and the invert and forward kinematic solutions are carried out then. The corresponding numeral example of the forward kinematics is given. This type of parallel manipulators has a symmetrical structure, less accumulated error, and can be used to construct virtual-axis machine tools. The analysis in this paper will play an important role in promoting the application of such manipulators.


Author(s):  
S-J Zhu ◽  
Z Huang ◽  
M Y Zhao

The 3R2T (three rotational and two independent translational degree of freedom (DoF)) symmetrical parallel manipulator may be adopted in bionics, for example, simulating the motion of a cervical spine based on their mobility property and performance close to isotropic limit. However, up to now, characteristics of this class of manipulators have not been well studied because of its short history. Hence, to study the feasibility of this class of manipulator for bionics, kinematics for 3-RCRR is analysed including position, singularity, velocity, and acceleration. Different from other 3R2T 5-DoF symmetrical parallel manipulators, the mobility of 3-RCRR is partially decoupled, which makes the realization of control system easier than in others.


2012 ◽  
Vol 472-475 ◽  
pp. 2096-2099
Author(s):  
Wen Jun Liu ◽  
Yu Feng Luo ◽  
Mei Tao Fu

The modeling approach of spatial parallel manipulator has been extensively studied based on the SOC theory in this paper. According to the characteristics of the parallel robot mechanism’s , ideas and general methods of spatial parallel manipulator modeling in parallel has been proposed and typical spatial mechanism’s modeling has been performed. Study shows that the parallel modeling approach can dramatically increase the modeling and solving efficiency for parallel manipulators.


Author(s):  
Gianmarc Coppola ◽  
Dan Zhang ◽  
Kefu Liu ◽  
Zhen Gao

In this work the dynamic performance and control of a 2DOF parallel robot is conducted. The study is partly motivated by large variations in dynamic performance and control within the reachable workspace of many parallel manipulators. The forward dynamic model of the robot is derived in detail. The connection method is directly utilized for this derivation. Subsequently, a dynamic performance study is undertaken. This reveals important information whilst using a forward dynamic model. A performance index is proposed to determine the variability of performance of the parallel manipulator. Then a trajectory-tracking scenario is undertaken using a linear controller. By means of control, the simulations illustrate the validity of the proposed index for parallel manipulators.


Author(s):  
Mansour Abtahi ◽  
Hodjat Pendar ◽  
Aria Alasty ◽  
Gholamreza Vossoughi

In the past few years, parallel manipulators have become increasingly popular in industry, especially, in the field of machine tools. Hexaglide is a 6 DOF parallel manipulator that can be used as a high speed milling machine. In this paper, the kinematics and singularity of Hexaglide parallel manipulator are studied systematically. At first, this robot has been modeled and its inverse and forward kinematic problems have been solved. Then, formulas for solving inverse velocity are derived and Jacobian matrix is obtained. After that, three different types of singularity for this type of robot have been investigated. Finally a numerical example is presented.


2021 ◽  
Author(s):  
Dongming Gan ◽  
Jiaming Fu ◽  
Mo Rastgaar ◽  
Byung-Cheol Min ◽  
Richard Voyles

Abstract Mobile robots with manipulation capability are a key technology that enables flexible robotic interactions, large area covering and remote exploration. This paper presents a novel class of actuation-coordinated mobile parallel robots (ACMPRs) that utilize parallel mechanism configurations and perform hybrid moving and manipulation functions through coordinated wheel actuators. The ACMPRs differ with existing mobile manipulators by their unique combination of the mobile wheel actuators and the parallel mechanism topology through prismatic joint connections. The common motion of the wheels will provide the mobile function while their differentiation will actuate the parallel manipulator function. This new concept reduces the actuation requirement and increases the manipulation accuracy and mobile motion stability through the coordinated and connected wheel actuators comparing with existing mobile parallel manipulators. The relative wheel location on the base frame also enables a reconfigurable base size with variable moving stability on the ground. The basic concept and general type synthesis are introduced and followed by the kinematics and inverse dynamics analysis of a selected three limb ACMPR. A numerical simulation also illustrates the dynamics model and the motion property of the new mobile parallel robot. The work provides a basis for introducing this new class of robots for potential applications in surveillance, industrial automation, construction, transportation, human assistance, medical applications and other operations in extreme environment such as nuclear plants, Mars, etc.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Guanyu Huang ◽  
Dan Zhang ◽  
Qi Zou

To meet the different requirements in the industrial area, a novel reconfigurable parallel mechanism is proposed based on the spatial multiloop overconstrained mechanism. The configurations can be changed by driving the low-DOF (degree-of-freedom) overconstrained mechanism. The mobility of this mechanism is investigated. And the kinematic model and Jacobian matrix are both established. Based on the Jacobian matrix, the workspace, stiffness, and conditional number are all analyzed. To focus on the application in the industrial area, this paper proposes a method to establish the relationship between the performance and the structural parameters by using the modified BP neural network. Based on this method, the structural parameters can be chosen by the requirements of the special task in the industrial area. Finally, some numerical examples are presented to verify the method.


Robotica ◽  
2021 ◽  
pp. 1-11
Author(s):  
Matteo Russo ◽  
Marco Ceccarelli

Abstract In study this paper, a geometric formulation is proposed to describe the workspace of parallel manipulators by using a recursive approach as an extension of volume generation for solids of revolution. In this approach, the workspace volume and boundary for each limb of the parallel manipulator is obtained with an algebraic formulation derived from the kinematic chain of the limb and the motion constraints on its joints. Then, the overall workspace of the mechanism can be determined as the intersection of the limb workspaces. The workspace of different kinematic chains is discussed and classified according to its external shape. An algebraic formulation for the inclusion of obstacles in the computation is also proposed. Both analytical models and numerical simulations are reported with their advantages and limitations. An example on a 3-SPR parallel mechanism illustrates the feasibility of the formulation and its efficiency.


Sign in / Sign up

Export Citation Format

Share Document