Research on the Compensation Method of Installation Errors in Guideway Straightness Measurement with PSD

2012 ◽  
Vol 630 ◽  
pp. 389-395
Author(s):  
Rui Fan ◽  
Di Zhang

Influence and Compensation Theory of Installation Errors in Guideway Straightness Measurement with PSD Is Analyzed. it Shows that Pincushion Distortion Affects PSD’s Accuracy, while Angle θ between Laser and Guideway, Error Angle Caused by Straightness Error and Angle β Generated when PSD Rotates about the Guideway Have Significant Influence on System Measurement Accuracy. PSD’s Pincushion Distortion Could Be Corrected and Installation State Can Be Determined by Measuring on Site and Calibrating with Laser Tracer. after Error Compensation, System Measurement Accuracy Is Greatly Improved.

2011 ◽  
Vol 121-126 ◽  
pp. 3850-3854
Author(s):  
Zi Ran Chen ◽  
Dong Lin Peng ◽  
Yong Zheng ◽  
Fang Yan Zheng ◽  
Tian Heng Zhang

Due to the complexity of measurement system, it is hard correct errors by using traditional error separation and error tracing technology. To reduce the production cost and improve the measurement accuracy, a novel error compensation method based on harmonic analysis is presented in this paper. In this way, high precision time grating sensors can be manufactured with low precision mechanical machining method. The experiment results prove that errors can be reduce within ±2″.


2011 ◽  
Vol 117-119 ◽  
pp. 751-755
Author(s):  
Hui Yuan Xiong ◽  
You Xu ◽  
Zhi Jian Zong ◽  
Qun Gao

The multi-joint measuring arm’s measurement accuracy is associated with the measuring pose configuration. As the feature of the multi-joints arm with the adjacent joint orthogonal design, the triangle-based representation of measuring arm configuration was derived. Then measuring arm pose configuration simplified representation was presented. Based on the simplified representation, a polynomial model of comprehensive error compensation was proposed, and the calibration algorithm was derived.Tests confirmed the effectiveness of the method, which can effectively improve the single-point measurement accuracy.


2019 ◽  
Vol 43 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Cheng Ming Kang ◽  
Chun Yu Zhao ◽  
Kuo Liu ◽  
Tie Jun Li ◽  
Bo Yang

To eliminate the influence of thermally induced error from a machine tool on machining accuracy, a comprehensive error compensation method for thermal displacement of the screw shaft and spindle is put forward. Based on a heat transfer mechanism and experimental analysis, a model of screw thermal expansion error is built. Modeling of spindle thermal growth that depends on speed variations is also proposed. Thermal tests for studying thermal behavior of the spindle and screw axis are carried out on the vertical drilling center TC500R. Finally, the compensation effect of the robust model is validated via experimental tests and machining. Experimental results show that thermal displacement variations are controlled within 2 μm when the compensation system is activated. The suggested model can achieve high accuracy and good applicability in different moving states. Machining results indicate that dimensional accuracy of the workpiece is significantly improved after implementation of compensation. Feasibility of the thermal error compensation system is satisfactory in applications for drilling operations.


Optik ◽  
2019 ◽  
Vol 178 ◽  
pp. 830-840
Author(s):  
Shuai Wang ◽  
Maosheng Xiang ◽  
Bingnan Wang ◽  
Fubo Zhang ◽  
Yirong Wu

Author(s):  
Xicong Zou ◽  
Xuesen Zhao ◽  
Guo Li ◽  
Zengqiang Li ◽  
Zhenjiang Hu ◽  
...  

On-machine error compensation (OMEC) is efficient at improving machining accuracy without increasing extra manufacturing cost, and involves the on-machine measurement (OMM) of machining accuracy and modification of program code based on the measurement results. As an excellent OMM technique, chromatic confocal sensing allows for the rapid development of accurate and reliable error compensation technique. The present study integrated a non-contact chromatic confocal probe into an ultra-precision machine for OMM and OMEC of machined components. First, the configuration and effectiveness of the OMM system were briefly described, and the relevant OMEC method was presented. With the OMM result, error compensation software was then developed to automatically generate a modified program code for error compensation. Finally, a series of cutting experiments were performed to verify the validity of the proposed OMEC method. The experimental results demonstrate that the proposed error compensation method is reliable and considerably improves the form error of machined components.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 748
Author(s):  
Qi Liu ◽  
Hong Lu ◽  
Xinbao Zhang ◽  
Yu Qiao ◽  
Qian Cheng ◽  
...  

The drive at the center of gravity (DCG) principle has been adopted in computer numerical control (CNC) machines and industrial robots that require heavy-duty and quick feeds. Using this principle requires accurate corrections of positioning errors. Conventional error compensation methods may cause vibrations and unstable control performances due to the delay between compensation and motor motion. This paper proposes a new method to reduce the positioning errors of the dual-driving gantry-type machine tool (DDGTMT), namely, a typical DCG-principle-based machine tool. An error prediction method is proposed to characterize errors online. An algorithm is proposed to quickly and accurately compensate the errors of the DDGTMT. Experiment results verify that the non-delay error compensation method proposed in this paper can effectively improve the accuracy of the DDGTMT.


Sign in / Sign up

Export Citation Format

Share Document