Effects of Aerodynamic Force on Strength Characteristics of Turbocharger Blades

2013 ◽  
Vol 658 ◽  
pp. 404-407
Author(s):  
Qing Guo Luo ◽  
Dong Ya Si ◽  
Xu Dong Wang ◽  
Guang Zheng Ran

One-way fluid-solid interaction analysis of a centrifugal compressor has been investigated by aerodynamic and finite-element method in this paper. An accurate three-dimensional flow passage model of the compressor has been created;the stress distribution of the main flow path has been obtained. The aerodynamic force was applied to the impeller blades. Finally, three kinds of loads were applied to the main blades and splitter blades. Intensive study of thestrength characteristic of the blades has been made.

2013 ◽  
Vol 376 ◽  
pp. 407-410
Author(s):  
Qing Guo Luo ◽  
Dong Ya Si ◽  
Zheng Guang Ran ◽  
Xu Dong Wang

An accurate three-dimensional flow passage model of the compressor has been created; the stress distribution of the main flow channel has been obtained. The aerodynamic force was applied to the impeller blades. Three kinds of loads were applied to the main blades and splitter blades. Modal characteristics of the compressor blades have been intensively studied.


1980 ◽  
Vol 102 (3) ◽  
pp. 297-301 ◽  
Author(s):  
A. Hamed ◽  
E. Baskharone

The present analysis describes the three dimensional compressible inviscid flow in the scroll and the vaneless nozzle of a radial inflow turbine. The solution to this flow field, which is further complicated by the geometrical shape of the boundaries, is obtained using the finite element method. Symmetric and nonsymmetric scroll cross sectional geometries are investigated to determine their effect on the general flow field and on the exit flow condiitons.


2020 ◽  
Vol 46 (3) ◽  
pp. 175-181
Author(s):  
Marcelo Bighetti Toniollo ◽  
Mikaelly dos Santos Sá ◽  
Fernanda Pereira Silva ◽  
Giselle Rodrigues Reis ◽  
Ana Paula Macedo ◽  
...  

Rehabilitation with implant prostheses in posterior areas requires the maximum number of possible implants due to the greater masticatory load of the region. However, the necessary minimum requirements are not always present in full. This project analyzed the minimum principal stresses (TMiP, representative of the compressive stress) to the friable structures, specifically the vestibular face of the cortical bone and the vestibular and internal/lingual face of the medullary bone. The experimental groups were as follows: the regular splinted group (GR), with a conventional infrastructure on 3 regular-length Morse taper implants (4 × 11 mm); and the regular pontic group (GP), with a pontic infrastructure on 2 regular-length Morse taper implants (4 × 11 mm). The results showed that the TMiP of the cortical and medullary bones were greater for the GP in regions surrounding the implants (especially in the cervical and apical areas of the same region) but they did not reach bone damage levels, at least under the loads applied in this study. It was concluded that greater stress observed in the GP demonstrates greater fragility with this modality of rehabilitation; this should draw the professional's attention to possible biomechanical implications. Whenever possible, professionals should give preference to use of a greater number of implants in the rehabilitation system, with a focus on preserving the supporting tissue with the generation of less intense stresses.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Sign in / Sign up

Export Citation Format

Share Document