Optical Properties of Nanostructured Aluminum Doped Zinc Oxide (ZnO) Thin Film for Thin Film Transistor (TFT) Application

2013 ◽  
Vol 667 ◽  
pp. 511-515 ◽  
Author(s):  
N.D. Md Sin ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

The properties of nanostructured aluminum (Al) doped zinc oxide (ZnO) thin film for thin film transistors (TFT) are presented. This research has been focused on optical and structural properties of Al doped ZnO thin film. The influence of Al doping concentration at 0~5 at.% on the Al doped ZnO thin film properties have been investigated. The thin films were characterized using UV-Vis-NIR spectrophotometer for optical properties. The surface morphology has been characterized using field emission scanning electron microscope (FESEM). The absorption coefficient spectra obtained from UV-Vis-NIR spectrophotometer measurement show all films have low absorbance in visible and near infrared (IR) region but have high UV absorption properties. The calculated Urbach energy indicated the defects concentrations in the thin films increase with doping concentrations The FESEM investigations shows that the nanoparticles size becomes smaller and denser as the doping concentration increase.

2013 ◽  
Vol 667 ◽  
pp. 549-552
Author(s):  
A.S.M. Rodzi ◽  
Mohamad Hafiz Mamat ◽  
M.N. Berhan ◽  
Mohamad Rusop Mahmood

The properties of zinc oxide thin films were prepared by sol-gel spin-coating method have been presented. This study based on optical and electrical properties of ZnO thin film. The effects of annealing temperatures that exposed with two environments properties have been investigated. Environments exposed in room (27°C) and hot (80°C) temperatures which are stored by various days. Solution preparation, thin film deposition and characterization process were involved in this project. The ZnO films were characterized using UV-Vis-NIR spectrophotometer for optical properties. From that equipment, the percentage of transmittance (%) and absorption coefficient spectra were obtained. With two environments showed have different absorption coefficient are reveal and all films have low absorbance in visible and near infrared (IR) region but have high UV absorption properties. From SEM investigations the surface morphology of ZnO thin film shows the particles size become smaller and denser in hot temperatures while in room temperatures have porosity between particles.


2021 ◽  
Vol 43 (3) ◽  
pp. 253-253
Author(s):  
Mehmet zkan Mehmet zkan ◽  
Sercen Sadik Erdem Sercen Sadik Erdem

In this paper, silver (Ag)doped Zinc Oxide(ZnO) thin films were prepared on glass and silicon substrate by using a thermionic vacuum arc technique. The surface, structural, optical characteristics of silver doped thin films have been examined by X-Ray diffractometer (XRD), field emission scanning emission electron microscopy (FESEM), atomic force microscopy (AFM), and UV-Visible spectrophotometer. As a result of these measurements, Ag, Zn and ZnO reflection planes were determined for thin films formed on Si and glass substrate. Nano crystallites have emerged in FESEM and AFM images. The produced films have low transparency. The optical band gap values were measured by photoluminescence devices at room temperature for thin films produced on silicon and glass substrate. The band gap values are very close to 3.10 eV for Ag doped ZnO thin films. The band gap of un-doped ZnO thin film is approximately 3.3 eV. It was identified that Ag doped changes the properties of the ZnO thin film.


2021 ◽  
Vol 63 (8) ◽  
pp. 778-782
Author(s):  
Tülay Yıldız ◽  
Nida Katı ◽  
Kadriye Yalçın

Abstract In this study, undoped semiconductor ZnO thin film and Bi-doped ZnO thin films were produced using the sol-gel spin coating method. By changing each parameter of the spin coating method, the best conditions for the formation of the film were determined via the trial and error method. When the appropriate parameter was found, the specified parameter was applied for each film. The structural, superficial, and optical properties of the films produced were characterized via atomic force microscope (AFM), UV-visible spectroscopy, and Fourier transform infrared (FTIR), and the effects of Bi dopant on these properties were investigated. When the morphological properties of the undoped and Bi-doped ZnO films were examined, it was observed that they had a structure in a micro-fiber shape consisting of nanoparticles. When the surface roughness was examined, it was observed that the surface roughness values became larger as the rate of Bi dopant increased. By examining the optical properties of the films, it was determined that they were direct band transition materials and Bi-doped thin films were involved in the semiconductor range. In addition, optical properties changed positively with Bi dopant. Since Bi-doped ZnO thin film has a wide bandgap and good optical properties, it is a material that can be used in optoelectronic applications.


Author(s):  
Wael Abdullah

Undoped and halogen-doped zinc oxide thin films are prepared by the thermal oxidation process. Zinc acetate dihydrate, ethanol, and Diethanolamine are used as precursor, solvent, and stabilizer, respectively. In the case of ZnO:Hal. dopant Ammonium chloride NH4Cl 99%, Benzene Bromide C6H5Br, or Benzene Iodide C6H5I for making dopant ZnO thin film with Cl, Br, I respectively is added to the precursor solution with an atomic percentage equal to 2-10.% hal. The transparent solution sprayed onto glass substrates, and are transformed into ZnO upon annealing at 500°C. XRD spectra of ZnO thin films, and optical properties of them as a function of halogen content have been investigated using U.V spectroscopy ( transmittance , refractive index, extinction coefficient and energy band gap ) for undoped and halogen-doped zinc oxide thin films.


2013 ◽  
Vol 667 ◽  
pp. 507-510 ◽  
Author(s):  
N.D. Md Sin ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

Aluminum (Al) doped Zinc Oxide (ZnO) thin films were prepared using sol-gel spin-coating method at different doping concentrations. The effects of Al doping concentration at 0~5 at.% on the Al doped ZnO thin film properties have been investigated. The thin films were characterized using Current-Voltage (I-V) measurement and field emission scanning electron microscope (FESEM) for electrical properties and surface morphology, respectively. The I-V measurement result indicated electrical properties of Al doped ZnO thin film improved with Al doping. The FESEM investigations show that the nanoparticles size becomes smaller and denser as the doping concentration increase.


2006 ◽  
Vol 320 ◽  
pp. 113-116
Author(s):  
Shigeru Tanaka ◽  
Yukari Ishikawa ◽  
Naoki Ohashi ◽  
Junichi Niitsuma ◽  
Takashi Sekiguchi ◽  
...  

We have obtained Er-doped ZnO thin film in a micropattern of reverse trapezoids processed on Si substrate by sputtering and ultrafine polishing techniques. Near-infrared light emission was detected successfully from the thin film filling a single micropit with 10 μm square. Transmission electron microscopy (TEM) observation showed epitaxial growth of ZnO crystals along the curvature of the micropit.


Coatings ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 248 ◽  
Author(s):  
Benjamin Schumm ◽  
Thomas Abendroth ◽  
Saleh A. Alajlan ◽  
Ahmed M. Almogbel ◽  
Holger Althues ◽  
...  

Multilayered nanocoatings allow outstanding properties with broad potential for glazing applications. Here, we report on the development of a multilayer nanocoating for zinc oxide (ZnO) and antimony doped tin oxide (ATO). The combination of ZnO and ATO thin films with their promising optical properties is a cost-efficient alternative for the production of energy-efficient glazing. It is an effective modification of the building envelope to reduce current high domestic demand of electrical power for air conditioning, especially in hot climates like Saudi Arabia. In this paper, we report the development of a nanocoating based on the combination of ZnO and ATO. Principle material and film investigations were carried out on lab-scale by dip coating with chemical solution deposition (CSD), while with regard to production processes, chemical vapor deposition (CVD) processes were evaluated in a second stage of the film development. It was found that with both processes, high-quality thin films and multilayer coatings with outstanding optical properties can be prepared. While keeping the optical transmission in the visible range at around 80%, only 10% of the NIR (near infrared) and below 1% of UV (ultraviolet) light passes these coatings. However, in contrast to CSD, the CVD process allows a free combination of the multilayer film sequence, which is of high relevance for production processes. Furthermore, it can be potentially integrated in float glass production lines.


2021 ◽  
Vol 24 (3) ◽  
pp. 38-42
Author(s):  
Marwa Mudfer Alqaisi ◽  
◽  
Alla J. Ghazai ◽  

In this work, pure Zinc oxide and tin doped Zinc oxide thin films nanoparticles with various volume concentrations of 2, 4, 6, and 8V/V% were prepared by using the sol-gel method. The optical properties were investigated by using UV-Visible spectroscope, and the value exhibits the direct allowed transition. The average of transmittance was around ~(17-23) %in visible region. The optical energy band gap was calculated with wavelength (300-900) nm for pure ZnO and Sn doped ZnO thin films which decreases with increasing concentration from 3.4 eV to 3.1 eV respectively and red shift. The real dielectric(εr) and the imaginary dielectric εiare the same behavior of the refractive index(n) the extinction coefficient (k) respectively. The optical limiting properties were studied by using an SDL laser with a wavelength of 235 nm. ZnO and doping thin films an found efficient as optic limiting and depend on the concentration of the all samples.


2011 ◽  
Vol 25 (20) ◽  
pp. 2741-2749 ◽  
Author(s):  
J. C. ZHOU ◽  
L. LI ◽  
L. Y. RONG ◽  
B. X. ZHAO ◽  
Y. M. CHEN ◽  
...  

High transparency and conductivity of transparent conducting oxide thin film are very important for improving the efficiency of solar cells. ZnO thin film is a better candidate for transparent conductive layer of solar cell. N-type ZnO thin films were prepared by radio-frequency magnetron sputtering on glass substrates. ZnO thin films underwent annealing treatment after deposition. The influence of the sputtering power on the surface morphology, the electrical and optical properties were studied by AFM, XRD, UV2450 and HMS-3000. The experimental results indicate that the crystal quality of ZnO thin film is improved and all films show higher c-axis orientation with increasing sputtering power from 50 to 125 W. The average transparency of ZnO thin films is higher than 90% in the range of 400–900 nm between the sputtering power of 50–100 W. After the rapid thermal annealing at 550°C for 300 s under N2 ambient, the minimum resistivity reach to 10-2Ω⋅ cm .


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 252 ◽  
Author(s):  
A. M. Alsaad ◽  
A. A. Ahmad ◽  
I. A. Qattan ◽  
Qais M. Al-Bataineh ◽  
Zaid Albataineh

Undoped ZnO and group III (B, Al, Ga, and In)-doped ZnO thin films at 3% doping concentration level are dip-coated on glass substrates using a sol-gel technique. The optical properties of the as-prepared thin films are investigated using UV–Vis spectrophotometer measurements. Transmittance of all investigated thin films is found to attain high values of ≥80% in the visible region. We found that the index of refraction of undoped ZnO films exhibits values ranging between 1.6 and 2.2 and approximately match that of bulk ZnO. Furthermore, we measure and interpret nonlinear optical parameters and the electrical and optical conductivities of the investigated thin films to obtain a deeper insight from fundamental and practical points of view. In addition, the structural properties of all studied thin film samples are investigated using the XRD technique. In particular, undoped ZnO thin film is found to exhibit a hexagonal structure. Due to the large difference in size of boron and indium compared with that of zinc, doping ZnO thin films with these two elements is expected to cause a phase transition. However, Al-doped ZnO and Ga-doped ZnO thin films preserve the hexagonal phase. Moreover, as boron and indium are introduced in ZnO thin films, the grain size increases. On the other hand, grain size is found to decrease upon doping ZnO with aluminum and gallium. The drastic enhancement of optical properties of annealed dip-synthesized undoped ZnO thin films upon doping with group III metals paves the way to tune these properties in a skillful manner, in order to be used as key candidate materials in the fabrication of modern optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document