thin film deposition
Recently Published Documents


TOTAL DOCUMENTS

1577
(FIVE YEARS 206)

H-INDEX

57
(FIVE YEARS 8)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 176
Author(s):  
Gennady Kvashnin ◽  
Boris Sorokin ◽  
Nikita Asafiev ◽  
Viacheslav Prokhorov ◽  
Andrei Sotnikov

New theoretical and experimental results of microwave acoustic wave propagation in diamond-based multilayer piezoelectric structures (MPS) as “Me1/(Al,Sc)N/Me2/(100) diamond/Me3” and “Me1/AlN/Me2/(100) diamond/Me3” under three metal film depositions, including the change in the quality factor Q as a result of Me3 impact, were obtained. Further development of our earlier studies was motivated by the necessity of creating a sensor model based on the above fifth layered MPS and its in-depth study using the finite element method (FEM). Experimental results on the change in operational checkpoint frequencies and quality factors under the effect of film deposition are in satisfactory accordance with FEM data. The relatively small decrease in the quality factor of diamond-based high overtone bulk acoustic resonator (HBAR) under the metal layer effect observed in a wide microwave band could be qualified as an important result. Changes in operational resonant frequencies vs. film thickness were found to have sufficient distinctions. This fact can be quite explained in terms of the difference between acoustic impedances of diamond and deposited metal films.


2021 ◽  
Vol 11 (24) ◽  
pp. 11689
Author(s):  
Mritunjaya Parashar ◽  
Anupama B. Kaul

During recent years, power conversion efficiencies (PCEs) of organic-inorganic halide perovskite solar cells (PSCs) have shown remarkable progress. The emergence of various thin film deposition processes to produce perovskite films, notably using solution processing techniques, can be credited in part for this achievement. The engineering of chemical precursors using solution processing routes is a powerful approach for enabling low-cost and scalable solar fabrication processes. In the present study, we have conducted a systematic study to tune the equimolar precursor ratio of the organic halide (methylammonium iodide; MAI) and metal halide (lead iodide; PbI2) in a fixed solvent mixture of N,N-dimethylformamide (DMF):dimethylsulfoxide (DMSO). The surface morphology, optical characteristics, and crystallinity of the films produced with these four distinct solutions were investigated, and our analysis shows that the MAI:PbI2 (1.5:1.5) film is optimal under the current conditions. The PSCs fabricated from the (1.5:1.5) formulation were then integrated into the n-i-p solar cell architecture on fluorine-doped tin oxide (FTO) substrates, which exhibited a PCE of ~14.56%. Stability testing on this PSC device without encapsulation at 29 °C (ambient temperature) and 60% relative humidity (RH) under one-sun illumination while keeping the device at its maximum power point showed the device retained ~60% of initial PCE value after 10 h of continuous operation. Moreover, the recombination analysis between all four formulations showed that the bimolecular recombination and trap-assisted recombination appeared to be suppressed in the more optimal (1.5:1.5) PSC device when compared to the other formulations used in the n-i-p PSC architecture.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kwon-Yong Shin ◽  
Mingyu Kang ◽  
Kwan Hyun Cho ◽  
Kyung-Tae Kang ◽  
Sang-Ho Lee

AbstractUniform deposition across large areas of an organic layer is one of the challenges for the industrial application of solution-based organic light‐emitting diode (OLED). In this paper, we propose an organic thin film deposition method for OLED using a micro multi-nozzle jet coating process. The developed micro multi-nozzle jet head consists of eighteen nozzles (100 μm diameter), a side suction line, inlets, and a nozzle protection outer hole. To demonstrate organic thin film deposition for OLED lighting device fabrication, a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) solution was used as a hole injection layer (HIL). Thickness uniformity of the PEDOT:PSS thin film was analyzed by regulating the jetting pressure. Through single-path coating of twelve successive stable column-jet flows, PEDOT:PSS organic film of 26 mm width was coated on an ITO substrate at 1 m/s head speed. The PEDOT:PSS thin film of 24.25 ± 1.55 nm (CV = 6.39%) thickness was obtained by the proposed coating method. For the feasibility test, OLED lighting devices with emission areas of 20 mm × 20 mm and 70 mm × 70 mm were successfully fabricated using PEDOT:PSS films deposited by a micro multi-nozzle jet coating method.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1452
Author(s):  
Potejana Potejanasak

In this study, an efficient nanofabrication process of metal microdisk arrays using direct imprinting was developed. This process was comprised of three steps; sputter etching on the quartz glass substrate, gold thin film deposition on an etched surface of a substrate, and transfer imprinting using a polyethylene terephthalate (PET) film mold on the Au thin film. A new idea to utilize a PET film mold for disk patterning by the nano transfer imprinting was examined. The PET film mold was prepared by thermally embossing the pillar pattern of a master mold on the PET film. The master mold was prepared from a silicon wafer. The PET film mold was used for transfer imprinting on a metal film deposited on a quartz substrate. The experimental results revealed that the PET film mold can effectively form gold micro-disk arrays on the Au film despite the PET film mold being softer than the Au film. This method can control the distribution and orientation of the nano-arrays on the disk. The plasmonic properties of the gold micro-disk arrays are studied and the absorbance spectrum exhibit depends on the distribution and orientation of gold micro-disk patterns. The nano-transfer imprinting technique is useful for fabricating metallic microdisk arrays on substrate as a plasmonic device.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Nina Taherimakhsousi ◽  
Mathilde Fievez ◽  
Benjamin P. MacLeod ◽  
Edward P. Booker ◽  
Emmanuelle Fayard ◽  
...  

AbstractWe report a fast, reliable and non-destructive method for quantifying the homogeneity of perovskite thin films over large areas using machine vision. We adapt existing machine vision algorithms to spatially quantify multiple perovskite film properties (substrate coverage, film thickness, defect density) with pixel resolution from pictures of 25 cm2 samples. Our machine vision tool—called PerovskiteVision—can be combined with an optical model to predict photovoltaic cell and module current density from the perovskite film thickness. We use the measured film properties and predicted device current density to identify a posteriori the process conditions that simultaneously maximize the device performance and the manufacturing throughput for large-area perovskite deposition using gas-knife assisted slot-die coating. PerovskiteVision thus facilitates the transfer of a new deposition process to large-scale photovoltaic module manufacturing. This work shows how machine vision can accelerate slow characterization steps essential for the multi-objective optimization of thin film deposition processes.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7135
Author(s):  
Dominik Maskowicz ◽  
Rafał Jendrzejewski ◽  
Wioletta Kopeć ◽  
Maria Gazda ◽  
Jakub Karczewski ◽  
...  

Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN]4 (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser–target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)Pt[CN]4 nanoparticles with an average thickness of 135 nm on Si and/or glass substrates. X-ray diffraction measurements show the crystalline structure of the film identical to that of the reference material. The temperature-dependent Raman spectroscopy indicates the spin transition in the temperature range of 275 to 290 K with 15 ± 3 K hysteresis. This result is confirmed by UV-Vis spectroscopy revealing an absorption band shift from 492 to 550 nm related to metal-to-ligand-charge-transfer (MLCT) for high and low spin states, respectively. Spin crossover is also observed with X-ray absorption spectroscopy, but due to soft X-ray-induced excited spin state trapping (SOXIESST) the transition is not complete and shifted towards lower temperatures.


Author(s):  
Ching Joe Tang ◽  
Muhammad Azuddin Hassan ◽  
Iskandar Yahya

Author(s):  
Ali Jabbar Fraih ◽  
Zainab Ali Harbeh

In this paper, the molybdenum disulfide (MoS2)/copper oxide (CuO) heterostructure is introduced in a very simple way for photoelectrochemical application. MoS2 multilayers were prepared by sonication method and decorated with copper oxide nanoparticles through its thin film deposition layer and heating in argon atmosphere. SEM, TEM, AFM, absorption and Raman analyses were employed to characterize the nanostructures. The results show that the presence of copper oxide nanoparticles reduces the recombination rate of photogenerated electron-holes in MoS2 multilayers and produces a significant photocurrent compared to the individual MoS2 electrode. Such a proposed structure demonstrates a high potential for photoelectrochemical applications.


Sign in / Sign up

Export Citation Format

Share Document