Research on Prediction Model of Surface Roughness in Ultrasonic Polishing Nano-ZrO2 Ceramics

2009 ◽  
Vol 69-70 ◽  
pp. 128-132
Author(s):  
Ming Li Zhao ◽  
Bo Zhao ◽  
Yu Qing Wang ◽  
Guo Fu Gao

The orthogonal test of surface roughness in ultrasonic polishing nano-ZrO2 ceramics was carried out in the present paper. Through the test, the influence of machining parameters on the surface roughness was investigated. The test results showed that the influence of abrasive size on surface roughness is the most remarkable, and the other important factors are the depth of cut, on/off work situation of ultrasonic generator, axial feed speed, and working table speed in turns. Furthermore, through the regressive analysis of test data, an empirical formula of surface roughness was established to select reasonable polishing parameters.

2021 ◽  
Author(s):  
Adeniyi Adeleke ◽  
Abou-El-Hossein Khaled ◽  
Odedeyi Peter

Abstract The desire for quality infrared lens with better surface finish has brought about the usage of brittle materials like germanium to be machined via a single point diamond turning machining process. However, achieving the required surface finish is complex if special machining techniques and approaches are not employed. In this paper, the effect of two different tool nose radius parameters on surface roughness of single point diamond turned germanium workpiece were studied and analyzed. The machining parameters selected for this experiment were feed, speed and depth of cut. Box-Behnken design was adopted to optimally create a combination of cutting parameters. Measurement of surface roughness after each run in both experiments was achieved using a Taylor Hobson PGI Dimension XL surface Profilometer. The resulting outcomes show that at most experimental runs, the surface roughness value decreased with an increase in nose radius. Mean absolute error was also used to compare the accuracy validation of the two models.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


Author(s):  
Andrew W. McFarland ◽  
Jonathan S. Colton ◽  
Daniel Cox ◽  
Steven Y. Liang

Mechanical micro machining is an emerging technology with many potential benefits and equally great challenges. The push to develop processes and tools capable of micro scale fabrication is a result of the widespread drive to reduce part and feature size. One important factor that contributes to the ability to machine at the microscale level is the overall size of the machine tool due to the effects of thermal, static, and dynamic stabilities. This paper explores the technical feasibility of miniaturized machine tools capable of fabricating features and parts on the micro scale in terms of depth of cut and part form accuracy. It develops a machine tool and examines its capabilities through benchmarking tests and the making of precision dies for the injection molding of microcantilever parts. The design and configuration of a miniaturized vertical machining center of overall dimension less than 300 mm on a side is presented and the component specifications discussed. The six axis machine has linear positioning resolution of 4 nm by 10 nm by 10 nm, with accuracy on the order of 0.3 μm, in the height, feed, and cross feed directions. The work volume as defined by the ranges of axes travel are 4 mm by 25 mm by 25 mm in the height, feed, and cross feed and 20 degrees in the rotational space. To quantify the performance capability of the miniaturized machine tool as a system, a series of evaluation tests were implemented based on linear and arch trajectories over a range of feed speed and depth of cut conditions. Test results suggest that micro level form accuracy and sub-micron level finish are generally achievable for parts with moderate curvature and gradient in the geometry under selected machining parameters and conditions. An injection mold was made of steel with this machine and plastic microcantilevers fabricated. Plastic microcantilevers are appropriate for sensing applications such as surface probe microscopy. The microcantilevers, made from polystyrene, were 464 to 755 μm long, 130 μm wide and only 6–9 μm thick. They showed very good uniformity, reproducibility, and appropriate mechanical response for use as sensors in surface force microscopy.


2016 ◽  
Vol 689 ◽  
pp. 7-11 ◽  
Author(s):  
Y. Şahin ◽  
Senai Yalcinkaya

The selection of optimum machining parameters plays a significant role for the quality characteristics of products and its costs for grinding. This study describes the optimization of the grinding process for an optimal parametric combination to yield a surface roughness using the Taguchi method. An orthogonal array and analysis of variance are employed to investigate the effects of cutting environment (A), depth of cut (B) and feed rate (C) on the surface roughness characteristics of mold steels. Confirmation experiments were conducted to verify the optimal testing parameters. The experimental results indicated that the surface finish decreased with cutting-fluid and depth of cut, but decreased with increasing feed rate. It is revealed that the cutting fluid environment had highest physical as well as statistical influence on the surface roughness (71.38%), followed by depth of cut (25.54%), but the least effect was exhibited by feed rate (1.62%).


Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 312 ◽  
Author(s):  
Pablo Fook ◽  
Daniel Berger ◽  
Oltmann Riemer ◽  
Bernhard Karpuschewski

Metallic implants were the only option for both medical and dental applications for decades. However, it has been reported that patients with metal implants can show allergic reactions. Consequently, technical ceramics have become an accessible material alternative due to their combination of biocompatibility and mechanical properties. Despite the recent developments in ductile mode machining, the micro-grinding of bioceramics can cause insufficient surface and subsurface integrity due to the inherent hardness and brittleness of these materials. This work aims to determine the influence on the surface and subsurface damage (SSD) of zirconia-based ceramics ground with diamond wheels of 10 mm diameter with a diamond grain size (dg) of 75 μm within eight grinding operations using a variation of the machining parameters, i.e., peripheral speed (vc), feed speed (vf), and depth of cut (ae). In this regard, dental thread structures were machined on fully sintered zirconia (ZrO2), alumina toughened zirconia (ATZ), and zirconia toughened alumina (ZTA) bioceramics. The ground workpieces were analysed through a scanning electron microscope (SEM), X-ray diffraction (XRD), and white light interferometry (WLI) to evaluate the microstructure, residual stresses, and surface roughness, respectively. Moreover, the grinding processes were monitored through forces measurement. Based on the machining parameters tested, the results showed that low peripheral speed (vc) and low depth of cut (ae) were the main conditions investigated to achieve the optimum surface integrity and the desired low grinding forces. Finally, the methodology proposed to investigate the surface integrity of the ground workpieces was helpful to understand the zirconia-based ceramics response under micro-grinding processes, as well as to set further machining parameters for dental implant threads.


Author(s):  
Sunil Dutta ◽  
NSK Reddy

Manufacturers in different sectors look for materials exhibiting good mechanical properties, high machinability, and superior surface integrity. The machinability of Mg alloys is one of the vital aspects which requires an exhaustive survey during their selection for different applications. The study examines the surface integrity of a fabricated AM alloy (Mg alloy with 7 wt%Al-0.9 wt%Mn) through dry turning. During the experiments, the input variables of turning viz. cutting speed( v), depth of cut (DOC), and feed( f) is altered and applied to the workpiece. The data obtained for the two response variables viz. surface roughness and microhardness accentuate the maximum influence of feed, followed by DOC and speed. For validation a two-stage methodology was adopted; In the first stage, the validation was done with the help of Analysis of variance (ANOVA); the results show the % contribution of feed, speed, and DOC on average roughness is 66.94%, 5.91%, and 27.23% and on microhardness is 47%, 8.3%, and 44.57%, respectively. Subsequently, in the second stage, the surface plots are drawn for both the response variables to ascertain the ANOVA outcomes; the shape of the plots corroborates the experimental and ANOVA results. The study results provide vital insights for parameter selection to get improved results on surface roughness and microhardness during machining of AM alloy.


2018 ◽  
Vol 12 (2) ◽  
pp. 104-108 ◽  
Author(s):  
Yusuf Fedai ◽  
Hediye Kirli Akin

In this research, the effect of machining parameters on the various surface roughness characteristics (arithmetic average roughness (Ra), root mean square average roughness (Rq) and average maximum height of the profile (Rz)) in the milling of AISI 4140 steel were experimentally investigated. Depth of cut, feed rate, cutting speed and the number of insert were considered as control factors; Ra, Rz and Rq were considered as response factors. Experiments were designed considering Taguchi L9 orthogonal array. Multi signal-to-noise ratio was calculated for the response variables simultaneously. Analysis of variance was conducted to detect the significance of control factors on responses. Moreover, the percent contributions of the control factors on the surface roughness were obtained to be the number of insert (71.89 %), feed (19.74 %), cutting speed (5.08%) and depth of cut (3.29 %). Minimum surface roughness values for Ra, Rz and Rq were obtained at 325 m/min cutting speed, 0.08 mm/rev feed rate, 1 number of insert and 1 mm depth of cut by using multi-objective Taguchi technique.


2020 ◽  
Vol 841 ◽  
pp. 363-368
Author(s):  
Zvikomborero Hweju ◽  
Khaled Abou-El-Hossein

Acoustic emission signal-based prediction of surface roughness has been utilized widely, yet little work has been done in this regard on RSA443. This paper seeks to study the correlation between acoustic emission (AE) signal parameters and surface roughness. Estimation of surface roughness using AE signal parameters and subsequent examination of the influence of AE signal parameters (root mean square, peak rate and prominent frequency) on the accuracy of the RSM model in surface roughness prediction are carried out. The experiment is designed using the Taguchi L9 orthogonal array to minimize the number of experiments. Emitted acoustic signals are captured using a Piezotron sensor. Three RSM models are formulated and compared in this study: a model that uses only critical machining parameters (cutting speed, depth of cut and feed rate), a model that uses only AE signal parameters (root mean square, peak rate and prominent frequency) and a model that uses both critical machining parameters and AE signal parameters. An assessment based on the models’ mean absolute percentage error (MAPE) is made to see if AE signal parameters have any contribution towards surface roughness prediction accuracy. The order of parameter significance in the most accurate model is investigated in this paper. The mean absolute percentage error results for the models indicate that the model in which AE signal parameters are utilized in conjunction with critical machining parameters has the highest prediction accuracy of 97.32%. The model that utilizes only critical machining parameters has a prediction accuracy of 96.35% while the one that utilizes only AE signal parameters has a prediction accuracy of 84.43%. It is observed that the order of parameter significance from the most to the least significant is as follows: feed rate, cutting speed, peak rate, AErms, depth of cut and prominent frequency.


Sign in / Sign up

Export Citation Format

Share Document