Analysis on Distribution Law of Damaged Filters for Bag Dedusters in Coal-Fired Power Plants

2013 ◽  
Vol 690-693 ◽  
pp. 1069-1073
Author(s):  
Ying Shuai Zhang ◽  
Ming Feng Xu ◽  
Hui Shen ◽  
Yun Yi Tao

Operating for 1.5 years, part of filtering bags for bag dedusters in a coal-fired power plant had severely decreased intensity and were generally broken. These disabled bags were mainly at the middle and tail of dedusters. By analysis, the reason of the ineffectual filtering bags is oxidation corrosion and more flue gas passing through, owing to the nonuniform distribution of gas. As an improvement measure, such methods are needed as operation optimization, installing de-nitrification system and adding gas uniform plate in dedusters.

Author(s):  
Alberto Vannoni ◽  
Andrea Giugno ◽  
Alessandro Sorce

Abstract Renewable energy penetration is growing, due to the target of greenhouse-gas-emission reduction, even though fossil fuel-based technologies are still necessary in the current energy market scenario to provide reliable back-up power to stabilize the grid. Nevertheless, currently, an investment in such a kind of power plant might not be profitable enough, since some energy policies have led to a general decrease of both the average price of electricity and its variability; moreover, in several countries negative prices are reached on some sunny or windy days. Within this context, Combined Heat and Power systems appear not just as a fuel-efficient way to fulfill local thermal demand, but also as a sustainable way to maintain installed capacity able to support electricity grid reliability. Innovative solutions to increase both the efficiency and flexibility of those power plants, as well as careful evaluations of the economic context, are essential to ensure the sustainability of the economic investment in a fast-paced changing energy field. This study aims to evaluate the economic viability and environmental impact of an integrated solution of a cogenerative combined cycle gas turbine power plant with a flue gas condensing heat pump. Considering capital expenditure, heat demand, electricity price and its fluctuations during the whole system life, the sustainability of the investment is evaluated taking into account the uncertainties of economic scenarios and benchmarked against the integration of a cogenerative combined cycle gas turbine power plant with a Heat-Only Boiler.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5384 ◽  
Author(s):  
Mingwei Yan ◽  
Yuetao Shi

Compared with limestone-based wet flue gas desulfurization (WFGD), magnesia-based WFGD has many advantages, but it is not popular in China, due to the lack of good wastewater treatment schemes. This paper proposes the wastewater treatment scheme of selling magnesium sulfate concentrate, and makes thermal and economic analysis for different concentration systems in the scheme. Comparisons of different concentration systems for 300 MW power plant were made to determine which system is the best. The results show that the parallel-feed benchmark system is better than the forward-feed benchmark system, and the parallel-feed optimization system with the 7-process is better than other parallel-feed optimization systems. Analyses of the parallel-feed optimization system with 7-process were made in 300, 600, and 1000 MW power plants. The results show that the annual profit of concentration system for a 300, 600, and 1000 MW power plant is about 2.58 million, 5.35 million, and 7.89 million Chinese Yuan (CNY), respectively. In different concentration systems of the scheme for selling magnesium sulfate concentrate, the parallel-feed optimization system with the 7-process has the best performance. The scheme can make a good profit in 300, 600, and 1000 MW power plants, and it is very helpful for promoting magnesia-based WFGD in China.


Author(s):  
M Stöhr ◽  
H Schütz ◽  
H Krüger

Power plant operators in Germany, Europe and other countries are reducing flue gas NOx emissions of large and small power plants to meet air quality regulations for the population and the environment. Beginning with the environmental impact, the use of different techniques for NOx reduction and experience with these techniques is given.


Author(s):  
Bao-Ming Sun ◽  
Shui-e Yin ◽  
Xu-Dong Gao

This paper mainly seeks to explore and answer some questions for desulfurization and denitration in thermal power plants in China. Firstly, the desulfurization and denitration technology applicated in the power plant in China at present were analyzed. It is considered that taken combination of the existed technique for purified the pollutants from the thermal power plants, not only lead to the wastage of huge amount of investment, increasing of operating costs, decreasing of the economic benefits, but also add an additional area. It is necessary to develop the integration technology of desulfurization and denitration simultaneously. Secondly the integration technology of desulfurization and denitration at present in China was briefly reviewed such as activated carbon adsorption, SNRB, etc. and most of those at a research stage include the plasma technology. In the third of the paper, the non-thermal plasma technology i.e electron-beam technique, corona discharge and dielectric barrier discharge were discussed. Finally, combined with the actual situation in China, the application prospects of the desulfurization and denitration technology using plasma discharge in the flue gas was bring up. The article also pointed out the barriers need to be overcome if the technology will be applied in power plant, as well as the development direction of desulfurization and denitration technology from flue gas in power plant in China.


2018 ◽  
Vol 245 ◽  
pp. 07014 ◽  
Author(s):  
Evgeny Ibragimov ◽  
Sergei Cherkasov

The article presents data on the calculated values of improving the efficiency of fuel use at the thermal power plant as a result of the introduction of a technical solution for cooling the flue gases of boilers to the lowest possible temperature under the conditions of safe operation of reinforced concrete and brick chimneys with a constant value of the flue gas temperature, when changing the operating mode of the boiler.


2021 ◽  
Author(s):  
Basavaraja Revappa Jayadevappa

Abstract Operation of power plants in carbon dioxide capture and non-capture modes and energy penalty or energy utilization in such operations are of great significance. This work reports on two gas fired pressurized chemical-looping combustion power plant lay-outs with two inbuilt modes of flue gas exit namely, with carbon dioxide capture mode and second mode is letting flue gas (consists carbon dioxide and water) without capturing carbon dioxide. In the non-CCS mode, higher thermal efficiencies of 54.06% and 52.63% efficiencies are obtained with natural gas and syngas. In carbon capture mode, a net thermal efficiency of 52.13% is obtained with natural gas and 48.78% with syngas. The operating pressure of air reactor is taken to be 13 bar for realistic operational considerations and that of fuel reactor is 11.5 bar. Two power plant lay-outs developed based combined cycle CLC mode for natural gas and syngas fuels. A single lay-out is developed for two fuels with possible retrofit for dual fuel operation. The CLC Power plants can be operated with two modes of flue gas exit options and these operational options makes them higher thermal efficient power plants.


Author(s):  
Soumya Jyoti Chatterjee ◽  
Goutam Khankari ◽  
Sujit Karmakar

The comparative performance study is carried out for 500 MW Supercritical (SupC) Oxy-Coal Combustion (OCC) and Air-Coal Combustion (ACC) power plants with membrane-based CO2 capture at the fixed furnace temperature. The proposed configurations are modelled using a computer-based analysis software 'Cycle-Tempo' at different operating conditions, and the detailed thermodynamic study is done by considering Energy, Exergy, and Environmental (3-E) analysis. The result shows that the net energy and exergy efficiencies of ACC power plants with CO2 capture are about 35.07 % and 30.88 %, respectively, which are about 6.44 % and 5.77 % points, respectively higher than that of OCC power plant. Auxiliary power consumption of OCC based power plant is almost 1.97 times more than that of the ACC based plant due to huge energy utilization in the Air Separation Unit (ASU) of OCC plant which leads to performance reduction in OCC plant. However, environmental benefit of OCC based power plant is more than that of ACC based power plant with respect to CO2 emission. OCC plant emits about 0.164 kg/kWh of CO2 which is approximately 16.75 times lower than the CO2 emission in ACC based power plant. It is also analyzed that the performance of the CO2 Capture Unit (CCU) for the OCC based plant is about 3.65 times higher than the ACC based power plant due to higher concentration of CO2 (nearly 80.63%) in the flue gas emitting from OCC plant. The study also reveals that the auxiliary power consumption per kg of CO2 capture of the OCC based plant is about 0.142 kWh/kg, which is approximately 0.06 times lower than the ACC based plant. The higher performance of the OCC based power plant is found at lower value of flue gas recirculation due to the fact that reduction in exergy destruction at the mixing zone of the combustor is higher than the increase in exergy destruction of the heat exchangers at higher furnace exit temperature. But the metallurgical temperature limit of boiler tube materials restricts the use of the higher value of furnace temperature. OCC based power plant with CO2 capture can be preferred over ACC based plant with CO2 capture due to higher environmental benefits towards mitigating CO2, the key greenhouse gas on earth in spite of exhibiting lesser energy and exergy efficiencies.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Alberto Vannoni ◽  
Andrea Giugno ◽  
Alessandro Sorce

Abstract Renewable energy penetration is growing, due to the target of greenhouse-gas-emission reduction, even though fossil fuel-based technologies are still necessary in the current energy market scenario to provide reliable back-up power to stabilize the grid. Nevertheless, currently, an investment in such a kind of power plant might not be profitable enough, since some energy policies have led to a general decrease of both the average single national price of electricity (PUN) and its variability; moreover, in several countries, negative prices are reached on some sunny or windy days. Within this context, combined heat and power (CHP) systems appear not just as a fuel-efficient way to fulfill local thermal demand but also as a sustainable way to maintain installed capacity able to support electricity grid reliability. Innovative solutions to increase both the efficiency and flexibility of those power plants, as well as careful evaluations of the economic context, are essential to ensure the sustainability of the economic investment in a fast-paced changing energy field. This study aims to evaluate the economic viability and environmental impact of an integrated solution of a cogenerative combined cycle gas turbine power plant with a flue gas condensing heat pump. Considering capital expenditure, heat demand, electricity price, and its fluctuations during the whole system life, the sustainability of the investment is evaluated taking into account the uncertainties of economic scenarios and benchmarked against the integration of a cogenerative combined cycle gas turbine power plant with a heat-only boiler (HOB).


Author(s):  
Frank Sander ◽  
Richard Carroni ◽  
Stefan Rofka ◽  
Eribert Benz

The rigorous reduction of greenhouse gas emissions in the upcoming decades is only achievable with contribution from the following strategies: production efficiency, demand reduction of energy and carbon dioxide (CO2) capture from fossil fueled power plants. Since fossil fueled power plants contribute largely to the overall global greenhouse gas emissions (> 25% [1]), it is worthwhile to capture and store the produced CO2 from those power generation processes. For natural-gas-fired power plants, post-combustion CO2 capture is the most mature technology for low emissions power plants. The capture of CO2 is achieved by chemical absorption of CO2 from the exhaust gas of the power plant. Compared to coal fired power plants, an advantage of applying CO2 capture to a natural-gas-fired combined cycle power plant (CCPP) is that the reference cycle (without CO2 capture) achieves a high net efficiency. This far outweighs the drawback of the lower CO2 concentration in the exhaust. Flue Gas Recirculation (FGR) means that flue gas after the HRSG is partially cooled down and then fed back to the GT intake. In this context FGR is beneficial because the concentration of CO2 can be significantly increased, the volumetric flow to the CO2 capture unit will be reduced, and the overall performance of the CCPP with CO2 capture is increased. In this work the impact of FGR on both the Gas Turbine (GT) and the Combined Cycle Power Plant (CCPP) is investigated and analyzed. In addition, the impact of FGR for a CCPP with and without CO2 capture is investigated. The fraction of flue gas that is recirculated back to the GT, need further to be cooled, before it is mixed with ambient air. Sensitivity studies on flue gas recirculation ratio and temperature are conducted. Both parameters affect the GT with respect to change in composition of working fluid, the relative humidity at the compressor inlet, and the impact on overall performance on both GT and CCPP. The conditions at the inlet of the compressor also determine how the GT and water/steam cycle are impacted separately due to FGR. For the combustion system the air/fuel-ratio (AFR) is an important parameter to show the impact of FGR on the combustion process. The AFR indicates how close the combustion process operates to stoichiometric (or technical) limit for complete combustion. The lower the AFR, the closer operates the combustion process to the stoichiometric limit. Furthermore, the impact on existing operational limitations and the operational behavior in general are investigated and discussed in context of an operation concept for a GT with FGR.


Author(s):  
Xin Zhu ◽  
Chang’an Wang ◽  
Chunli Tang ◽  
Defu Che

Performance of lignite-fueled power plants can be improved by predrying the lignite and it is influenced by the characteristics of drying heat source. Heat source for lignite predrying in power plants can be high-temperature flue gas, boiler exhaust gas and extraction steam. Nevertheless, balance point among drying safety, lignite drying degree and drying thermal economy cannot be located using single drying heat source. In this study, a lignite-fueled power plant with a two-stage drying system was proposed. The drying system mainly contains two fluidized bed dryers — the first stage dryer and the second stage dryer. Boiler exhaust gas and extraction steam supply the heat, respectively. The proposed power plant can attain higher lignite drying degree than the power plant in which only boiler exhaust was employed. The new power plant also features higher overall efficiency for the same lignite drying degree compared with extraction steam drying power plant..


Sign in / Sign up

Export Citation Format

Share Document