Based on Artificial Neural Network Simulation of Alloy Finite Element

2013 ◽  
Vol 710 ◽  
pp. 739-742
Author(s):  
Shu Zhang

Artificial neural networks are composed of interconnecting artificial neurons (programming constructs that mimic the properties of biological neurons). Artificial neural networks may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. First modal analyses of microstructure defects are performed in ANSYS. Second the genetic algorithm is implemented in MATLAB to Calculate the Value of b and p. The last, The FEM analysis results are imported in ANSYS about the Stress distribution. The result presented in this paper is obtained using the Genetic Algorithm Optimization Toolbox.

The Artificial Intelligence is growing and covering various aspects of our daily life. The idea seems to be very complex. It seems that a program cannot be developed using our home PC. But believe me, it's not that difficult. Let us try to understand what the neural networks are and how they can be applied in trading. Artificial Neural Networks can be used in forex Currency Trading, for finding or predicting the next possible movements. We know that Artificial Neural Networks involves study of neurons in the human brain, sometimes called as biological network.ANN is based on connections of nodes, units called as artificial nodes or neurons. Neural network is an entity consisting of artificial neurons, among which there is an organized relationship. These relations are similar to a biological brain.


2014 ◽  
pp. 35-39
Author(s):  
Viktor Lokazyuk ◽  
Viktor Cheshun ◽  
Vitaliy Chornenkiy

The base principles of a technique of application of 3-layer feedforward fullconnected artificial neural network for execution of adaptive algorithms of testing of digital microprocessor devices are considered. The method of change of weight coefficients and thresholds of artificial neurons in the mode of operation of artificial neural network realized at the hardware level is considered. The application of this method provides implementation of adaptive algorithms of testing of the large complexity with the limited hardware resources of artificial neural network.


2019 ◽  
Vol 11 (8) ◽  
pp. 2384 ◽  
Author(s):  
Constantin Ilie ◽  
Catalin Ploae ◽  
Lucia Violeta Melnic ◽  
Mirela Rodica Cotrumba ◽  
Andrei Marian Gurau ◽  
...  

As the transformative power of AI crosses all economic and social sectors, the use of it as a modern technique for the simulation and/or forecast of various indicators must be viewed as a tool for sustainable development. The present paper reveals the results of research on modeling and simulating the influences of four economic indicators (the production in industry, the intramural research and development expenditure, the turnover and volume of sales and employment) on the evolution of European Economic Sentiment using artificial intelligence. The main goal of the research was to build, train and validate an artificial neural network that is able to forecast the following year’s value of economic sentiment using the present values of the other indicators. Research on predicting European Economic Sentiment Indicator (ESI) using artificial neural networks is a starting point, with work on this subject almost inexistent, the reason being mainly that ESI is a composite of five sectoral confidence indicators and is not thought to be an emotional response to the interaction of the entrepreneurial population with different economic indicators. The authors investigated, without involving a direct mathematical interaction among the indicators involved, predicting ESI based on a cognitive response. Considering the aim of the research, the method used was simulation with an artificial neural network and a feedforward network (structure 4-9-6-1) and a backward propagation instruction algorithm was built. The data used are euro area values (for 19 countries only—EA19) recorded between 1999 and 2016, with Eurostat as the European Commission’s statistical data website. To validate the results, the authors imposed the following targets: the result of the neural network training error is less than 5% and the prediction verification error is less than 10%. The research outcomes resulted in a training error (after 30,878 iterations) of less than 0.099% and a predictive check error of 2.02%, which resulted in the conclusion of accurate training and an efficient prediction. AI and artificial neural networks, are modeling and simulation methods that can yield results of nonlinear problems that cover, for example, human decisions based on human cognitive processes as a result of previous experiences. ANN copies the structure and functioning of the biological brain, having the advantage through learning and coaching processes (biological cognitive), to copy/predict the results of the thinking process and, thus, the process of choice by the biological brain. The importance of the present paper and its results stems from the authors’ desire to use and popularize modern methods of predicting the different macroeconomic indices that influence the behavior of entrepreneurs and therefore the decisions of these entrepreneurs based on cognitive response more than considering linear mathematical functions that cannot correctly understand and anticipate financial crises or economic convulsions. Using methods such as AI, we can anticipate micro- and macroeconomic developments, and therefore react in the direction of diminishing their negative effects for companies as well as the national economy or European economy.


2014 ◽  
Vol 919-921 ◽  
pp. 1063-1074
Author(s):  
Yung Ching Lin ◽  
Lee Kuo Lin ◽  
Shao Hong Tsai

Since the adoption of open-air policy, people make more frequent use of air travel to do various business or tourism activities. The volume of air traffic has greatly increased, along with the occurrences of traffic jam in the air. Delays of landings or take-offs and the congestions in the approach air space have become commonplace, exacerbating the already heavy workload of air-traffic controllers and the inadequacies of ATC system. Therefore, a study of flight time in ATC operation to help alleviate airspace congestions has become more and more urgent and important. Taking international airway A1 as an example, this study makes use of the known entry time, flight altitude, speed, penetrating and descending as the input of artificial neural networks; the time between departure and transfer point as the output of Artificial Neural Networks, to establish artificial neural network. Applying artificial neural networks and genetic algorithm to the study to simulate the result of actual flight, one can precisely estimate the flight time, thereby making it an efficient air-traffic-control instrument. It can help controllers handle different time segments of air traffic, thus upgrading the quality of air traffic control service.


2014 ◽  
Vol 584-586 ◽  
pp. 2423-2426
Author(s):  
Tian Bao Wu ◽  
Xun Liu ◽  
Tai Quan Zhou

In the bidding evaluation, the deviations are likely to be brought about by experts' subjectivity, arbitrary and tendentiousness. A method for construction project bidding based on the BP neural network improved by GA (Genetic Algorithm) is proposed. On the basis of the basic theory of the BP neural network, discussions are provided on how to rectify the drawbacks of slow convergence and prone to convergence to minimum with the use of GA. The model is successfully applied GA - BP artificial neural networks to project, which are in concert with the result of experts. The study makes contribution to research about the evaluation system of construction bidding management.


TEM Journal ◽  
2020 ◽  
pp. 1320-1329
Author(s):  
Kostadin Yotov ◽  
Emil Hadzhikolev ◽  
Stanka Hadzhikoleva

How can we determine the optimal number of neurons when constructing an artificial neural network? This is one of the most frequently asked questions when working with this type of artificial intelligence. Experience has brought the understanding that it takes an individual approach for each task to specify the number of neurons. Our method is based on the requirement of algorithms looking for a minimum of functions of type 𝑺􁈺𝒛􁈻 􀵌 Σ 􁈾𝝋𝒊 𝒎 􁈺𝒛 􁈻􁈿𝟐 𝒊􀭀𝟏 that satisfy the inequality 𝒑 􀵑 𝒎, where p is the dimensionality of the argument z, and m is the number of functions. Formulas for an upper limit of the required neurons are proposed for networks with one hidden layer and for networks with r hidden layers with an equal number of neurons.


Author(s):  
Т. В. Гавриленко ◽  
А. В. Гавриленко

В статье приведен обзор различных методов атак и подходов к атакам на системы искусственного интеллекта, построенных на основе искусственных нейронных сетей. Показано, что начиная с 2015 года исследователи в различных странах активно развивают методы атак и подходы к атакам на искусственные нейронные сети, при этом разработанные методы и подходы могут иметь критические последствия при эксплуатации систем искусственного интеллекта. Делается вывод о необходимости развития методологической и теоретической базы искусственных нейронных сетей и невозможности создания доверительных систем искусственного интеллекта в текущей парадигме. The paper provides an overview of methods and approaches to attacks on neural network-based artificial intelligence systems. It is shown that since 2015, global researchers have been intensively developing methods and approaches for attacks on artificial neural networks, while the existing ones may have critical consequences for artificial intelligence systems operations. We come to the conclusion that theory and methodology for artificial neural networks is to be elaborated, since trusted artificial intelligence systems cannot be created in the framework of the current paradigm.


Sign in / Sign up

Export Citation Format

Share Document