New Development of Cattail Fibre in Composite Uses

2013 ◽  
Vol 746 ◽  
pp. 385-389
Author(s):  
Li Yan Liu ◽  
Yu Ping Chen ◽  
Jing Zhu

This paper is aiming to develop the cattail fibre as reinforcing material due to its environmental benefits and excellent physical and insulated characteristics. The current work is concerned with the development of the technical fibres from the original plant and research on their reinforcing properties in the innovative composites. Polypropylene (PP) fibre was used as matrix in this research which was fabricated into fibre mats with cattail fibre together with different fibre volume fractions. Cattail fibre reinforced PP laminates were manufactured and compared with jute/PP composites. The tensile and bending properties of laminates were tested. The SEM micrographs of fracture surface of the laminates were analyzed as well. The results reveal that the tensile and bending properties of cattail/PP laminates are closed to those of jute/PP composites. The mechanical properties of cattail/jute/PP laminates with fibre volume fraction of 20/35/45 is betther than those of laminate reinforced with cattail fibers.

2021 ◽  
pp. 096739112110239
Author(s):  
Sheedev Antony ◽  
Abel Cherouat ◽  
Guillaume Montay

Nowadays natural fibre composites have gained great significance as reinforcements in polymer matrix composites. Composite material based on a polymer matrix reinforced with natural fibres is extensively used in industry due to their biodegradability, recyclability, low density and high specific properties. A study has been carried out here to investigate the fibre volume fraction effect of hemp fibre woven fabrics/PolyPropylene (PP) composite laminates on the tensile properties and impact hammer impact test. Initially, composite sheets were fabricated by the thermal-compression process with desired number of fabric layers to obtain composite laminates with different fibre volume fraction. Uniaxial, shear and biaxial tensile tests were performed and mechanical properties were calculated. Impact hammer test was also carried out to estimate the frequency and damping parameters of stratified composite plates. Scanning Electron Microscope (SEM) analysis was performed to observe the matrix and fibre constituent defects. Hemp fabrics/PP composite laminates exhibits viscoelastic behaviour and as the fibre volume fraction increases, the viscoelastic behaviour decreases to elastic behaviour. Due to this, the tensile strength increases as the fibre content increases. On the other hand, the natural frequency increases and damping ratio decrease as the fibre volume fraction increases.


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


2020 ◽  
pp. 152808372091353 ◽  
Author(s):  
Zunjarrao Kamble ◽  
Bijoya Kumar Behera ◽  
Teruo Kimura ◽  
Ino Haruhiro

The present research reports thermoset nanocomposites reinforced with cotton fibres extracted from textile waste called as ‘shoddy’ and graphite oxide nanoparticles as filler. The oriented fibre web of shoddy was produced by using the carding machine and it was used as reinforcement. The thermoset epoxy composites with four different fibre volume fraction values namely 0.1, 0.2, 0.3 and 0.4 were developed. These composites were characterized by mechanical properties to optimize the fibre volume fraction. Further, thermoset epoxy nanocomposites were developed by incorporating graphite oxide nanoparticles as filler in four different weight percentages, namely 0.1, 0.3, 0.5 and 1%. All the composites were characterized for mechanical properties, dynamic mechanical properties, thermal degradation behaviour and water absorption behaviour. It has been found that the developed composites can be used in items of furniture materials and to develop some visible and non-visible automotive components.


2015 ◽  
Vol 787 ◽  
pp. 632-636
Author(s):  
R. Parvatham ◽  
K. Chandrasekaran ◽  
S.K. Malhotra

Fiber Reinforced Plastics are now being used in all fields of industry as well as for consumer durables. In the present work, FRP laminates of glass/PP fabricated by film stacking method are studied for various mechanical properties. The glass/PP laminate of required thickness (3-4 mm) is fabricated by stacking a number of FRTP prepregs in the mould and applying heat and pressure in compression moulding press. Dynamic Mechanical Analysis, tensile, flexural and izod impact tests were performed on FRTP laminates. From DMA test, the following viscoelastic properties of GF/PP laminate were observed. (i) The storage modulus increases with increasing fibre volume fraction. (ii) The loss factor decreases with increase in volume fraction. Tensile strength and flexural strength values increase with increase in fibre volume fraction. Impact strength decreases with increase in fibre volume fraction. The results of the present study will be useful in determining the end use applications of FRTP laminates in industry.


2020 ◽  
Vol 26 (4) ◽  
pp. 699-706
Author(s):  
Feras Korkees ◽  
James Allenby ◽  
Peter Dorrington

Purpose 3D printing of composites has a high degree of design freedom, which allows for the manufacture of complex shapes that cannot be achieved with conventional manufacturing processes. This paper aims to assess the design variables that might affect the mechanical properties of 3D-printed fibre-reinforced composites. Design/methodology/approach Markforged Mark-Two printers were used to manufacture samples using nylon 6 and carbon fibres. The effect of fibre volume fraction, fibre layer location and fibre orientation has been studied using three-point flexural testing. Findings The flexural strength and stiffness of the 3D-printed composites increased with increasing the fibre volume fraction. The flexural properties were altered by the position of the fibre layers. The highest strength and stiffness were observed with the reinforcement evenly distributed about the neutral axis of the sample. Moreover, unidirectional fibres provided the best flexural performance compared to the other orientations. 3D printed composites also showed various failure modes under bending loads. Originality/value Despite multiple studies available on 3D-printed composites, there does not seem to be a clear understanding and consensus on how the location of the fibre layers can affect the mechanical properties and printing versatility. Therefore, this study covered this design parameter and evaluated different locations in terms of mechanical properties and printing characteristics. This is to draw final conclusions on how 3D printing may be used to manufacture cost-effective, high-quality parts with excellent mechanical performance.


2020 ◽  
Vol 15 ◽  
pp. 155892502090153
Author(s):  
Zunjarrao Kamble ◽  
Bijoya Kumar Behera

The primary aim of this research is to develop thermoset composites reinforced with cotton fibres extracted from textile waste. These composites are mainly targeted to replace timber in its application for furniture items and in some visible and non-visible automotive components. The pre-consumer cotton textile wastes such as cutting waste, in garment manufacturing, and defective fabrics were converted into the fibrous form called ‘shoddy’, using rag-tearing technique. The fibrous web of shoddy was produced using the carding machine. This web was used for developing thermoset composites as a reinforcement material. The thermoset composites with four different fibre volume fraction values, namely 0.1, 0.2, 0.3 and 0.4 were developed using compression moulding technique. The developed composites were characterised by mechanical properties, dynamic mechanical properties, thermal degradation behaviour and water absorption behaviour. The mechanical properties of the composites were found comparable with that of commercial wood. These composites can be used to develop a dashboard panel. The composites developed in this research have shown low water diffusion coefficient values as compared with pine, oak and linden wood.


2009 ◽  
Vol 18 (1) ◽  
pp. 096369350901800 ◽  
Author(s):  
Liang Zheng ◽  
Gong Xiong Liao ◽  
Xi Gao Jian

Continuous carbon fibre reinforced Poly (phthalazinone ether sulfone ketone) (PPESK) composites were prepared using a solution impregnation process and hot-press molding method. The effects of polymer solution viscosities on fibre impregnation, fibre volume fraction and thereby on mechanical properties of composites were studied. The results show that the fibre impregnation and fibre volume fraction decreased with increasing polymer solution viscosities, and the mechanical properties of composites mainly depended on the fibre volume content.


2018 ◽  
Vol 49 (9) ◽  
pp. 1233-1251 ◽  
Author(s):  
G Rajeshkumar

This paper represents the first effort aimed to study the interdependence of mercerization, moisture absorption and mechanical properties of sustainable Phoenix sp. fibre-reinforced epoxy composites fabricated by compression moulding technique. The investigation was carried out by varying the fibre length (10, 20 and 30 mm), fibre volume fraction (10%, 20%, 30%, 40% and 50%), concentration of sodium hydroxide for fibre treatment (5%, 10% and 15%) and immersion temperature (10℃, 30℃ and 60℃). The fibre–matrix interface and failure mechanism was studied by using scanning electron microscopy. The results revealed that the moisture absorption rate increased with the increase in fibre length, fibre volume fraction and immersion temperature result in loss of tensile and flexural properties. The moisture absorbed samples shows 15% and 7% drop in tensile and flexural strength, respectively. However, this loss was less in mercerized fibre-reinforced composites.


Sign in / Sign up

Export Citation Format

Share Document