Mechanical and Fractographic Studies of Surface-Treated Fly Ash Reinforced Polyester Composites

2013 ◽  
Vol 747 ◽  
pp. 47-50
Author(s):  
S. Zahi

In this study, the surface-treated fly ash particles, ranging from 0 to 50 percent of weight were used as fillers added to the unsaturated polyester (UP). The fly ash (FA) particles were characterized using Mastersizer 2000 particle size analyzer, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results indicated that the effective reinforcing particles had a mean diameter of 60 μm and were both the glass and crystalline phases of the solid FA. The mechanical properties of the composites were evaluated by conducting the hardness and tensile tests. The Charpy impact test was used to determine the amount of energy absorbed during break, and the fractography was observed by SEM. The micro-hardness was found to increase with the increasing amounts of FA particles. The 20-40 wt.% of the particles showed the best results of both impact strength and Modulus of elasticity . Also, high strength was obtained indicating that the FA can be a good filler to improve the mechanical properties of the UP matrix. The fractographic studies of the chosen compositions confirmed that the particles had strongly bonded with the UP matrix.

2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


Author(s):  
Muhammad Armaghan Siffat ◽  
Muhammad Ishfaq ◽  
Afaq Ahmad ◽  
Khalil Ur Rehman ◽  
Fawad Ahmad

This study is supervised to assess the characteristics of the locally available wheat straw ash (WSA) to consume as a substitute to the cement and support in enhancing the mechanical properties of concrete. Initially, after incineration at optimum temperature of 800°C for 0.5, the ash of wheat straw was made up to the desirable level of fineness by passing through it to the several grinding cycles. Subsequently, the X-ray fluorescence (XRF) along with X-ray diffraction (XRD) testing conducted on ash of wheat straw for the evaluation its pozzolanic potential. Finally, the specimens of concrete were made by consuming 10% and 20% percentages of wheat straw ash as a replacement in concrete to conclude its impact on the compressive strength of high strength concrete. The cylinders of steel of dimensions 10cm diameter x 20cm depth were acquired to evaluate the compressive strength of high strength concrete. The relative outcomes of cylinders made of wheat straw ash substitution presented the slight increase in strength values of the concrete. Ultimately, the C-100 blends and WSA aided cement blends were inspected for the rheology of WSA through FTIR spectroscopy along with Thermogravimetric technique. The conclusions authenticate the WSA potential to replace cement in the manufacturing of the high strength concrete.


2010 ◽  
Vol 654-656 ◽  
pp. 2126-2129 ◽  
Author(s):  
Yuichi Nakahira ◽  
Tomonari Inamura ◽  
Hiroyasu Kanetaka ◽  
Shuichi Miyazaki ◽  
Hideki Hosoda

Effect of nitrogen (N) addition on mechanical properties of Ti-Cr-Sn alloy was investigated in this study. Ti-7mol%Cr-3mol%Sn was selected and less than 0.5wt% of N were systematically added. The alloys were characterized by optical microscopy, X-ray diffraction analysis and tensile tests at room temperature. The apparent phase was β (bcc) phase, whereas the presence of precipitates was confirmed in 0.5wt%N-added alloy only which did not exhibit sufficient cold workability. The grain size was not largely affected by N addition being less than 0.5wt%. Tensile tests revealed that less than 0.5wt%N addition improves the strength which is due to the solution hardening by interstitial N atoms.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


2007 ◽  
Vol 546-549 ◽  
pp. 257-260 ◽  
Author(s):  
Zhen Yan Zhang ◽  
Li Ming Peng ◽  
Xiao Qin Zeng ◽  
Lin Du ◽  
Lan Ma ◽  
...  

Effects of extrusion on mechanical properties and damping capacity of Mg-1.8wt.%Cu -0.5wt.%Mn (MCM1805) alloy have been investigated. Tensile tests and dynamic mechanical analyzer were respectively used to measure tensile properties and damping capacity at room temperature of as-cast and as-extruded MCM1805 alloy. The microstructure was studied using optical microscope, X-ray diffraction and scanning electron microscope with an energy dispersive X-ray spectrometer. Granato-Lücke model was used to explain the influences of extrusion on damping capacity of MCM1805 alloy. The results showed that extrusion dramatically decreases the grain size but has little influence on phase composition and solute atoms concentration of MCM1805 alloy, and the grain refinement was the dominant reason for the obvious increase of tensile properties and decrease of internal friction of MCM1805 alloy.


2018 ◽  
Vol 89 (9) ◽  
pp. 1770-1781 ◽  
Author(s):  
Huaizhong Xu ◽  
Benedict Bauer ◽  
Masaki Yamamoto ◽  
Hideki Yamane

A facile route was proposed to fabricate core–sheath microfibers, and the relationships among processing parameters, crystalline structures and the mechanical properties were investigated. The compression molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)/poly(L-lactic acid) (PLLA) strip enhanced the spinnability of PHBH and the mechanical properties of PLLA as well. The core–sheath ratio of the fibers was determined by the prefab strip, while the PLLA sheath component did not completely cover the PHBH core component due to the weak interfacial tension between the melts of PHBH and PLLA. A rotational target was applied to collect aligned fibers, which were further drawn in a water bath. The tensile strength and the modulus of as-spun and drawn fibers increased with increasing the take-up velocities. When the take-up velocity was above 500 m/min, the jet became unstable and started to break up at the tip of the Taylor cone, decreasing the mechanical properties of the fibers. The drawing process facilitated the crystallization of PLLA and PHBH, and the tensile strength and the modulus increased linearly with the increasing the draw ratio. The crystal information displayed from wide-angle X-ray diffraction patterns and differential scanning calorimetry heating curves supported the results of the tensile tests.


2016 ◽  
Vol 704 ◽  
pp. 183-189
Author(s):  
Yong Jun Su ◽  
Yi Feng Zheng ◽  
De Liang Zhang ◽  
Fan Tao Kong

TiAl alloy with a composition of Ti-43Al-5V-4Nb-Y (at.%) was prepared by spark plasma sintering (SPS). The TiAl powders were sintered between 650°C and 1300°C for 5 min under different loads. With the increasing of the temperature, the diffusion of the elements can be observed. Full compaction is achieved in a short period of time and the overall processing duration does not exceed 30 min. A fully lamellar structure was seen in the TiAl alloy after heat treatment. The microstructures of the samples were determined by X-ray diffraction and scanning electron microscopy. Their mechanical properties were evaluated by tensile tests performed at room temperature


2017 ◽  
Vol 892 ◽  
pp. 73-81
Author(s):  
Anja Oswald ◽  
Rosita Schmidtchen ◽  
Daniel Šimek ◽  
David Rafaja ◽  
Rudolf Kawalla ◽  
...  

A new method for a fast analysis of heavily deformed, multicomponent ferritic/pearlitic steels microstructure based on XRD measurements had been developed. Its practical application has been examined and proven during wire rod production of a high-strength eutectoid non-alloyed steel grade containing 0.81 weight percent carbon. For individual technological conditions, the lattice strains and their anisotropy were analysed quantitatively by means of fast X-ray diffraction measurements and correlated with the results of comprehensive mechanical testing. Obtained relationships between the microstructure characteristics and mechanical properties were described using physically based models and used to establish a material specific database for prediction of the mechanical properties from X-ray diffraction data. Depending on the deformation state different parameters have to be applied for the material’s macroscopic properties prediction. Additionally, the fast microstructure analysis can provide more detailed information in the case of deviations from the as-required material’s properties due to technological aberrations.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1885-1890 ◽  
Author(s):  
ZUOCHENG WANG ◽  
GUOTAO CUI ◽  
TAO SUN ◽  
WEIMIN GUO ◽  
XIULING ZHAO ◽  
...  

In our research, boron was added into the Nb -added high strength low alloy (HSLA) H -section steels. The contents of boron added were 4ppm, 8ppm and 11ppm, respectively. The mechanical properties of H -section steels with/without boron were examined by using uniaxial tensile test and Charpy impact test ( V -notch). The morphologies of the microstructure and the fracture surfaces of the impact specimens were observed by metalloscope, stereomicroscope and electron probe. The experimental results indicate that boron gives a significant increase in impact toughness, especially in low temperature impact toughness, though it leads to an unremarkable increase in strength and plasticity. For instance, the absorbed energy at -40°C reaches up to 126J from 15J by 8ppm boron addition, and the ductile-brittle transition temperature declines by 20°C. It is shown that boron has a beneficial effect on grain refinement. The fracture mechanism is transited from cleavage fracture to dimple fracture due to boron addition.


2014 ◽  
Vol 59 (1) ◽  
pp. 127-131 ◽  
Author(s):  
J. Bogucka

Abstract The influence of bonding temperature on microstructure and mechanical properties of AA5251 alloy sheets have been analyzed in the paper. The alloy was deformed with the method of accumulative roll bonding (ARB) in various temperature conditions i.e. at ambient temperature up to 5th cycle (ε = 4.0) and using pre-heating of sheet packs at 200°C and 300°C up to 10 cycles (ε = 8.0). The deformed material was subjected to structural observations using TEM, measurements of crystallographic texture with the technique of X-ray diffraction and tensile tests. It was established that the temperature of roll-bonding had a significant effect on the structure evolution and the observed changes of mechanical properties. High refinement of microstructure and optimum mechanical properties were obtained for the material processed at lower temperatures, i.e. at ambient temperature and pre-heating at 200°C. Recovery structure processes occurring during deformation were observed in the alloy bonded with pre-heating at 300°C and therefore mechanical properties were lower than for the alloy bonded at lower temperatures.


Sign in / Sign up

Export Citation Format

Share Document