scholarly journals Design and Implementation on Auto Test Set of an Airborne Radar

2013 ◽  
Vol 756-759 ◽  
pp. 489-492
Author(s):  
Fu Lu Jin ◽  
Yun Peng Li ◽  
Hong Rui Wang

To automatic test the function and performance of an airborne radar, changeable test adapter is adopted to implement the hardware and software design of the automatic test set of the antenna, transceiver and indicator of the radar based on AT89C52. Problems such as t the different types of interfaces, the various kinds of signals and the test of microwave signal are solved successfully and the objectives of resource sharing and automatic test are realized. The test software is designed by modular structure, and with the help of automatic test set hardware, the required test items of the radar system are experimented and the test process control succeeded. Experiment results show that the automatic test set performs steadily and the results meet the requirements of the airborne radar. The set has the advantages of intelligent, manageable and reducing artificial errors. It provides effective guarantees for radars maintenance, fault diagnosis and fault detection, and has a wide application prospect with low cost.

2015 ◽  
Vol 44 (2) ◽  
pp. 116-121 ◽  
Author(s):  
Mónica García ◽  
Mirta Stupak ◽  
Miriam Pérez ◽  
Guillermo Blustein

Purpose – The purpose of this paper is to reduce the amount of copper in antifouling paints by using eugenol as an additive. Biofouling leads to deterioration of any submerged material. The most widespread method for control is the application of cuprous oxide antifouling paints which are toxic. First of all, the paper describes the effect of eugenol on larvae of Balanus amphitrite (fouling organism) under laboratory conditions and then the preparation, application and performance of different types of antifouling paints in field trials. Design/methodology/approach – Three types of soluble matrix antifouling paints were prepared with different pigments. The first one containing 16 per cent v/v copper, the second with 1.6 per cent copper and the third with 1.6 per cent copper + 2 per cent eugenol. Findings – After 12 months of immersion in Mar del Plata harbour paints containing 1.6 per cent copper + eugenol and 16 per cent copper were the most effective. Although these formulations showed a similar performance, copper + eugenol-based paint contains 90 per cent lesser copper than a traditional copper-based formulation. Originality/value – The use of antifouling paints with copper + eugenol combination as pigment is a promising alternative due to its performance, low cost and reduction in copper leaching to environment.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3210
Author(s):  
Abdul Rehman ◽  
Muhammad Anees ◽  
Shama Sehar ◽  
Saleh S. Alhewairini ◽  
Devendra P. Saroj ◽  
...  

The aim of the present study is to assess the wastewater treatment efficiency of a low-cost pilot-scale trickling filter (TF) system under a prevailing temperature range of 12 °C–38 °C. Operational data (both influent and effluent) for 330 days were collected from the pilot-scale TF for various physicochemical and biological parameters. Average percentage reductions were observed in the ranges of 52–72, 51–73, 61–81, and 74–89% for BOD5, COD, TDS, and TSS, respectively, for the whole year except the winter season, where a 74–88% reduction was observed only for TSS, whilst BOD5, COD, and TDS demonstrated reductions in the ranges of 13–50, 13–49, and 23–61%, respectively. Furthermore, reductions of about 43–55% and 57–86% in fecal coliform count were observed after the 1st and 6th day of treatment, respectively, throughout study period. Moreover, the pilot-scale TF model was based on zero-order kinetics calibrated at 20 °C using experimental BOD5 data obtained in the month of October to calculate the k20 value, which was further validated to determine the kt value for each BOD5 experimental setup. The model resulted in more accurate measurements of the pilot-scale TF and could help to improve its ability to handle different types of wastewater in the future.


2010 ◽  
Vol 96 (3) ◽  
pp. 8-15 ◽  
Author(s):  
Elizabeth S. Grace ◽  
Elizabeth J. Korinek ◽  
Zung V. Tran

ABSTRACT This study compares key characteristics and performance of physicians referred to a clinical competence assessment and education program by state medical boards (boards) and hospitals. Physicians referred by boards (400) and by hospitals (102) completed a CPEP clinical competence assessment between July 2002 and June 2010. Key characteristics, self-reported specialty, and average performance rating for each group are reported and compared. Results show that, compared with hospital-referred physicians, board-referred physicians were more likely to be male (75.5% versus 88.3%), older (average age 54.1 versus 50.3 years), and less likely to be currently specialty board certified (80.4% versus 61.8%). On a scale of 1 (best) to 4 (worst), average performance was 2.62 for board referrals and 2.36 for hospital referrals. There were no significant differences between board and hospital referrals in the percentage of physicians who graduated from U.S. and Canadian medical schools. The most common specialties referred differed for boards and hospitals. Conclusion: Characteristics of physicians referred to a clinical competence program by boards and hospitals differ in important respects. The authors consider the potential reasons for these differences and whether boards and hospitals are dealing with different subsets of physicians with different types of performance problems. Further study is warranted.


Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


Author(s):  
Mohammad Rizk Assaf ◽  
Abdel-Nasser Assimi

In this article, the authors investigate the enhanced two stage MMSE (TS-MMSE) equalizer in bit-interleaved coded FBMC/OQAM system which gives a tradeoff between complexity and performance, since error correcting codes limits error propagation, so this allows the equalizer to remove not only ICI but also ISI in the second stage. The proposed equalizer has shown less design complexity compared to the other MMSE equalizers. The obtained results show that the probability of error is improved where SNR gain reaches 2 dB measured at BER compared with ICI cancellation for different types of modulation schemes and ITU Vehicular B channel model. Some simulation results are provided to illustrate the effectiveness of the proposed equalizer.


1987 ◽  
Vol 14 (3) ◽  
pp. 134-140 ◽  
Author(s):  
K.A. Clarke

Practical classes in neurophysiology reinforce and complement the theoretical background in a number of ways, including demonstration of concepts, practice in planning and performance of experiments, and the production and maintenance of viable neural preparations. The balance of teaching objectives will depend upon the particular group of students involved. A technique is described which allows the embedding of real compound action potentials from one of the most basic introductory neurophysiology experiments—frog sciatic nerve, into interactive programs for student use. These retain all the elements of the “real experiment” in terms of appearance, presentation, experimental management and measurement by the student. Laboratory reports by the students show that the experiments are carefully and enthusiastically performed and the material is well absorbed. Three groups of student derive most benefit from their use. First, students whose future careers will not involve animal experiments do not spend time developing dissecting skills they will not use, but more time fulfilling the other teaching objectives. Second, relatively inexperienced students, struggling to produce viable neural material and master complicated laboratory equipment, who are often left with little time or motivation to take accurate readings or ponder upon neurophysiological concepts. Third, students in institutions where neurophysiology is taught with difficulty because of the high cost of equipment and lack of specific expertise, may well have access to a low cost general purpose microcomputer system.


2021 ◽  
Vol 11 (6) ◽  
pp. 2535
Author(s):  
Bruno E. Silva ◽  
Ramiro S. Barbosa

In this article, we designed and implemented neural controllers to control a nonlinear and unstable magnetic levitation system composed of an electromagnet and a magnetic disk. The objective was to evaluate the implementation and performance of neural control algorithms in a low-cost hardware. In a first phase, we designed two classical controllers with the objective to provide the training data for the neural controllers. After, we identified several neural models of the levitation system using Nonlinear AutoRegressive eXogenous (NARX)-type neural networks that were used to emulate the forward dynamics of the system. Finally, we designed and implemented three neural control structures: the inverse controller, the internal model controller, and the model reference controller for the control of the levitation system. The neural controllers were tested on a low-cost Arduino control platform through MATLAB/Simulink. The experimental results proved the good performance of the neural controllers.


2021 ◽  
pp. 088391152199784
Author(s):  
Nipun Jain ◽  
Shashi Singh

Development of an artificial tissue by tissue engineering is witnessed to be one of the long lasting clarified solutions for the damaged tissue function restoration. To accomplish this, a scaffold is designed as a cell carrier in which the extracellular matrix (ECM) performs a prominent task of controlling the inoculated cell’s destiny. ECM composition, topography and mechanical properties lead to different types of interactions between cells and ECM components that trigger an assortment of cellular reactions via diverse sensing mechanisms and downstream signaling pathways. The polysaccharides in the form of proteoglycans and glycoproteins yield better outcomes when included in the designed matrices. Glycosaminoglycan (GAG) chains present on proteoglycans show a wide range of operations such as sequestering of critical effector morphogens which encourage proficient nutrient contribution toward the growing stem cells for their development and endurance. In this review we discuss how the glycosylation aspects are of considerable importance in everyday housekeeping functions of a cell especially when placed in a controlled environment under ideal growth conditions. Hydrogels made from these GAG chains have been used extensively as a resorbable material that mimics the natural ECM functions for an efficient control over cell attachment, permeability, viability, proliferation, and differentiation processes. Also the incorporation of non-mammalian polysaccharides can elicit specific receptor responses which authorize the creation of numerous vigorous frameworks while prolonging the low cost and immunogenicity of the substance.


Sign in / Sign up

Export Citation Format

Share Document